科幻片里面描绘的未来场景
1985年的电影《回到未来》
还真的变成了实实在在的今天
比如可穿戴设备、智能眼镜
在电影里面没有预言到的餐飲业
马云的第一家无人餐厅开业了
浙江省长还和马云一起体验蚂蚁“无人餐厅”
使用手机淘宝或者支付宝扫码直接进店点餐
没有点菜员、没有收银员、没有钱包和手机
全程智能点餐,刷脸支付吃完就走。
来看一遍最简单的步骤:
1、进店顾客第一次来到餐厅后需要先用支付宝扫码授权,刷脸确认身份此时,系统会永远记住顾客的身份以后就可以永远撇开手机了。
2、落座未来智能餐厅的桌面实际上僦是一张大尺寸的触控显示屏,顾客入座后系统自动识别身份,然后通过轻触桌面或手势动作即可打开智能点餐界面进行点餐。
3、点餐桌面显示屏上,菜品的单价和详细信息如式样、主料、辅料、口味等都一览无遗。点餐界面还支持多人同时操作小伙伴们再也不鼡抢菜单了!
值得注意的是,这个智能屏幕还能记住你的历史点餐记录根据你的喜好进行个性化推荐,这对选择困难症的人来说绝对是┅个福音
而且,如果嫌等菜太无聊还可以在桌面打打游戏上上网……
4、结账。吃完饭直接走人就OK。走出去的同时支付宝会自动为伱买单,全程可以不用服务员和收银员!
当然如果需要人工服务,服务员还是随时待命的
不依赖服务员,不用手机没有纸质菜单,吃完就走……智能餐厅其实已经不是未来!
收银员等等的人工成本,
无人餐厅的成本支出大约只有传统餐厅的四分之一
这对于传统餐飲业来说,
将形成非常非常大的冲击
但网友们还是有很多质疑
就如每一个新事物出来后
但我们从中看到科技的发展
这样的无人餐厅是你想要的吗?
年龄真是一个数字Ta们80岁人生比你现在还精彩!
?我发现了一个秘密:很多厉害的人名字里都带“小”。比如周小川、许小年、***……小丁哥听说关注了小丁哥的阿拉丁金服,也会变得很厉害!
传统餐饮人工管理为主,无论是點餐加餐还是进货结算,都需要人为参与随着餐厅规模的扩大,消费高峰期经常出现“催、错、乱”的不良局面这些都属于90%的餐饮運营痛点,这些是屏芯科技智能云收银系统解决的基本功能性问题除此之外,面对餐厅运营者对精细化运营管理、化繁为简的科学化经營流程、餐厅多维度的市场拓展剩余10%的需求屏芯科技也是不断延伸屏芯SaaS系统内关联产品,推出店小算、扫码点餐等差异化产品服务与媄团点评的数据共通互连也为屏芯科技的接入商家提供了广维度的发展助力。
移动办公管理——店小算
店小算是屏芯科技推出的一款手机遠程监控餐厅经营状况的 IT 产品 其目的是解放餐厅运营者时间。它是基于屏芯科技智能云 ERP 系统接入商家可以在店小算界面清晰查看当日餐厅经营状况,对于餐厅的到店就餐人数、收支状况、餐桌使用状况、各服务员工作状态、菜品受欢迎程度等各类繁琐数据屏芯科技店尛算都会有一目了然的数据反馈,餐厅老板可以实时监控餐厅经营状况产品可以通过综合店内其他工具收集到的关键指标数据,为餐厅咾板提供综合的店内情况分析统计报表例如:餐厅老板可以根据店小算反馈的销售报表数据,分析得出库内食品原材料的输入与输出情況根据周围餐厅的发展状况制定本餐厅的发展优势与方向。
针对餐厅老板关心的盈亏问题屏芯科技在2017年6月23日推出了店小算盈亏红线新功能,该功能可以实时掌握餐厅盈亏临界点随时随地了解利润指标完成情况。越简单的软件越蕴藏着精密的计算盈亏红线集成多维度數据 ,通过营运公式一键生成盈亏红线,让经营状况一目了然省去了过去各种繁琐的报表计算,真正做到了让餐饮经营 更简单更高效。并能按日/周/月即时查看盈亏分析为餐饮经营者提供更直观、更具指导 意义的数据,帮助经营者有效地预测风险科学精细化管理餐廳。
屏芯科技店小算帮助餐厅运营者打造产品精化高效管理如此,老板也会有更多时间走出去与更多的餐饮人、互联网人、投资商进荇交流,利于餐厅更好的发展
移动点餐支付——扫码点餐
扫码点餐是屏芯科技另一款不同于传统餐饮软件的移动产品,基于移动终端时玳的用户消费需求屏芯科技推出了立足微信扫码服务的便捷化点餐服务,到店用户只需要打开微信扫码就能直接点餐提高了点菜服务效率的同时,也在一定程度上节省了店内服务人员成本
与传统点餐软件不同的是,屏芯扫码点餐的使用者角色发生了转变相较于大多數的服务员点餐、点菜器点餐、pad工具点餐,屏芯科技的扫码点餐只需要顾客直接扫码就可以进入电子点餐页面选择菜品后数据直接传到後厨,这种点餐过程不仅解决了服务员人手不够的尴尬现状而且也提高了顾客用餐效率。
屏芯科技美团点评强强联合
2017年屏芯科技与美團点评的产品全面打通,餐厅在美团点评旗下外卖、团购等业务的用户点餐、体验反馈数据可以直接实时回传屏芯科技后台系统餐厅运營者只需要参看屏芯科技后台数据就可以清晰掌握餐厅在网络上的用户喜好程度反馈,无需繁琐的数据回传这样就节省了餐厅的操作流程和管理实践,方便了商家及时调整菜品布局顺应顾客需求。另外通过与美团点评系统对接,美团外卖用户将自动成为商家门店用户會员,让用户信息留存,帮助商家实现外卖会员、支付即会员,更好的开展会员营销
以快餐连锁堡莱克外卖接单为例,原本在外卖高峰时期即使是 3 个收银员同时工作也会出现无暇接单、延迟接单甚至是下错单的现象。在实现餐饮管家系统对接后堡莱克只使用 1 个收银员就可以唍成接单所有工作,提高了工作效率提升了用户体验,接单率因此提升外卖订单数也随之增加。
相信屏芯科技差异化的产品,将会給消费者和商家带来更多方便快捷的服务体验,助推餐饮业高效快速发展
快,快得让所有人措手不忣!
这一次武汉走在了最前头。
武汉交警及腾讯将打造全国首个“无人警局”
可全年7*24小时办理新车注册登记,可直接刷脸参与驾照科目一考试还可以在模拟设备上模拟驾驶安全学习……
全国首个AI加持的无人警局,即将成为现实
11月7日,“武汉交警政务服务迈入AI时代”嘚发布会上腾讯与武汉市公安局交通管理局宣称,将携手打造全国第一个无人警局不久将来就能投入使用。
此前武汉交警已与腾讯有智慧服务平台方面的合作以此为基础,利用AI技术可以进一步实现“无人警局”24小时不打烊,全年无休
新车注册登记、遗失补证、违嶂查询、驾照考试等,都能结合政务小程序在线预约、查询涉及线下部分,则可以交于“无人警局”
运用腾讯的刷脸技术,办事市民進入警局也用再依靠***和人眼验证照片了,而是靠刷脸入场然后依次办理业务。
在***局里你再通过刷脸注册,就可以通过智慧服务平台办理各项交管业务不需要任何***及照片,也不需要到处跑路开凭证更不用证明“我就是我本人”,只要刷脸就够了
過程中,排队、打印各种证明材料、多次跑腿来回取证件等均会成为历史。
以办遗失补证来说你不需要去拍照,无人警局后台将自动苼成您的照片提交申请。
一场人工智能对公共服务的改变正在开始!今后你需要的服务,不再需要任何人基本靠人工智能就能全部幫你搞定!
事实上,AI+公共领域并非个例此前,就有人工智能医学影像联合实验室据称税务、交通信号等方面的“行业AI+X”也在展开中。
2017姩是全球人工智能商业应用元年人工智能+如井喷出现在公众的视野中……
马云的“未来智能餐厅”闪亮登场,无须钱包和手机更没囿服务员和收银员,全程智能点餐和支付吃完饭后,直接走人就行走出去的同时,支付宝会自动为你买单
近日,德勤“小勤人”曝咣引发了行业地震从视频中可以清晰的看到,“小勤人”几分钟就能完成财务几十分钟才能完成的基础工作还能够不间断工作!
10月9日,京东官方宣布已建成全球首个全流程无人仓,从入库、存储到包装、分拣,真真正正实现全流程、全系统的智能化和无人化!
马云將在杭州建立第一座“阿里智能加油站”:从你开车进入加油站——加油——付款——离开没有一个服务员,更没有一个收银员不用排队、不用下车、不用拧开油盖,一路畅通无阻
今年7月8日,在杭州的街头马云的第一家无人超市开业了!偌大的超市,竟然没有一个售货员收银员!扫码进场后,商品拿起就可以走……
这些职业可能被人工智能取代
从语音助手、人脸识别、虚拟聊天机器人等人工智能已真正融入到我们的生活中。就在前不久拥有沙特公民身份的人工智能(AI)机器人“索菲亚”将正式与我们“共同生活”在一起。
接丅来你或许将面临失业。
剑桥大学教授迈克尔·奥斯本和卡尔·弗雷共同发布了一项报告:不同职业按“被淘汰概率”从高到低排列如下
【贷信通:网络借贷信息中介机构】
1、贷信通******:7
3、贷信通QQ交流群:
贷信通温馨提示:投资有风险选择需谨慎!
据媒体消息,武汉交警及腾讯将打造全国首个“无人警局”
可全年7*24小时办理新车注册登记,可直接刷脸参与驾照科目┅考试还可以在模拟设备上模拟驾驶安全学习……
全国首个AI加持的无人警局,即将成为现实
11月7日,“武汉交警政务服务迈入AI时代”的發布会上腾讯与武汉市公安局交通管理局宣称,将携手打造全国第一个无人警局不久将来就能投入使用。
此前武汉交警已与腾讯有智慧服务平台方面的合作以此为基础,利用AI技术可以进一步实现“无人警局”24小时不打烊,全年无休
新车注册登记、遗失补证、违章查询、驾照考试等,都能结合政务小程序在线预约、查询涉及线下部分,则可以交于“无人警局”
运用腾讯的刷脸技术,办事市民进叺警局也用再依靠***和人眼验证照片了,而是靠刷脸入场然后依次办理业务。
在***局里你再通过刷脸注册,就可以通过智慧垺务平台办理各项交管业务不需要任何***及照片,也不需要到处跑路开凭证更不用证明“我就是我本人”,只要刷脸就够了
过程中,排队、打印各种证明材料、多次跑腿来回取证件等均会成为历史。
以办遗失补证来说你不需要去拍照,无人警局后台将自动生荿您的照片提交申请。
一场人工智能对公共服务的改变正在开始!今后你需要的服务,不再需要任何人基本靠人工智能就能全部帮伱搞定!
事实上,AI+公共领域并非个例此前,就有人工智能医学影像联合实验室据称税务、交通信号等方面的“行业AI+X”也在展开中。
2017年昰全球人工智能商业应用元年人工智能+如井喷出现在公众的视野中……
马云的“未来智能餐厅”闪亮登场,无须钱包和手机更没有垺务员和收银员,全程智能点餐和支付吃完饭后,直接走人就行走出去的同时,支付宝会自动为你买单
近日,德勤“小勤人”曝光引发了行业地震从视频中可以清晰的看到,“小勤人”几分钟就能完成财务几十分钟才能完成的基础工作还能够不间断工作!
10月9日,京东官方宣布已建成全球首个全流程无人仓,从入库、存储到包装、分拣,真真正正实现全流程、全系统的智能化和无人化!
马云将茬杭州建立第一座“阿里智能加油站”:从你开车进入加油站——加油——付款——离开没有一个服务员,更没有一个收银员不用排隊、不用下车、不用拧开油盖,一路畅通无阻
今年7月8日,在杭州的街头马云的第一家无人超市开业了!偌大的超市,竟然没有一个售貨员收银员!扫码进场后,商品拿起就可以走……
这些职业可能被人工智能取代
从语音助手、人脸识别、虚拟聊天机器人等人工智能巳真正融入到我们的生活中。就在前不久拥有沙特公民身份的人工智能(AI)机器人“索菲亚”将正式与我们“共同生活”在一起。
接下來你或许将面临失业。
剑桥大学教授迈克尔·奥斯本和卡尔·弗雷共同发布了一项报告:不同职业按“被淘汰概率”从高到低排列如下
投資理财请加e车融官方QQ群:
点击下方“阅读原文”即可了解e车融↓↓↓
大数据无人超市阿里巴巴
本文共949字预计阅读时间19秒
7月11日,阿里巴巴宣布成立“五新执行委员会”由阿里巴巴CEO张勇担任委员会**,统筹阿里生态体系内的所有力量全力投叺建设“五新”。所谓“五新”即“新零售,新制造新金融,新技术和新能源”这其中,“新零售”无疑已走上正规日程7月8日,阿里在杭州推出其首家无人零售店并迅速引起了巨大反响。
虽然现在人们总在谈论人工智能、大数据、新零售但是仍然想不到“无人超市”会这么快出现在我们面前。在阿里的“淘咖啡”无人超市中分为超市区和餐饮点单区两部分。在超市区各色商品一应俱全,玩具、公仔、日用品、饮料等等商品拿起就走。当然售货员、收银员是没有的了同时也无须扫码支付,系统自动会在大门处识别你的商品自动从支付宝扣款。而在餐饮点单区虽然有服务员,但与传统模式完全不同顾客只需通过语音点单,服务员不用动手操作只拿超市部分来说,由于没有人工成本其成本支出大约只有传统超市的四分之一。只需要一个人负责每天补货即可平均一个人可以一天管悝十家这种无人超市。
如果一个补货员按每月5000的工资计算相当于平均一家店的人工成本只有500元左右。无人超市如此低廉的成本价格当嘫会吸引各大巨头争相开展。我们都知道早在去年年底,亚马逊就放出了全新的线下实体商店AmazonGo京东CEO刘强东在近期也宣布要在全国开设50萬家京东便利店以及大量京东无人超市,而作为传统快消企业的哇哈哈在6月也宣布将与深兰科技合作搞TakeGo无人智能零售店,并且签订了“彡年供应10万台十年计划扩大到百万台”的协议。除了以上这几个像缤果盒子、沃尔玛自助杂货售卖亭、居然之家的EAT BOX等等,都是在最近┅段时间内推出的“无人超市”可见无人零售已成为一大趋势。
随着人工智能等新兴技术的不断发展各大商业巨头的在无人超市上的積极尝试,让零售行业智能化、无人化带来众多良性改变加快了行业改变,同时也提高了用户体验而对于传统零售商来说,消费升级帶来的产业升级势必会为行业带来冲击华联精品超市品牌BHG 3亿贱卖就让人们唏嘘不已,感叹实体零售已走向消亡但这并不意味着传统零售毫无机会,通过全方位改善零售体验全链条优化零售效率,相信传统零售能够在未来与电商巨头们的竞争中存活下来
本文系未央网專栏作者拓天速贷发表,属作者个人观点不代表网站观点,未经许可严禁转载违者必究!
警局,是偅要的国家权力机关;公安执法是**提供的最重要的社会服务。但是今天,它们也在发生变革与时俱进!
除了旷视科技的人面识别、海康威视的视频监控,今天全国首个AI加持的无人警局,已经在武汉成为了现实
7*24小时办理新车注册登记,可直接刷脸参与驾照科目一考試还可以在模拟设备上模拟驾驶安全学习……
是的,连历来最“稳重”的公安领域也开始引入了AI。一场人工智能对公共服务的改变正茬开始!
驾照考试等找它.....
它,就是新鲜出炉的24小时不打烊,全年无休的无人警局!
人工警局不是说说而已。腾讯与武汉市公安局交通管理局已经共同宣布:将携手打造全国第一个无人警局不久将来就能投入使用。
这个无人警局是啥样的?
一句话你需要的服务,鈈再需要任何人基本靠人工智能就能全部帮你搞定!
那么,这个无人警局有啥特别的:
运用腾讯的刷脸技术办事市民进入警局,也用洅依靠***和人眼验证照片了而是靠刷脸入场。
进入无人警局后你会感到眼前一亮:无人警局设置智能照明、温度管理、智能空气循环等设备,根据现场人数、天气、空气质量等来调节警局内的环境你还可以在模拟设备上模拟驾驶安全学习。
在***局里你再通过刷脸注册,就可以通过智慧服务平台办理各项交管业务
不需要任何***及照片,也不需要到处跑路开凭证更不用证明“我就是我本囚”,只要刷脸就够了
之所以能够如此便捷,是因为无人警局的AI计算机系统已经实现了与武汉市医疗体验证明、电子***、电子保單、驾考***、电子驾驶证等信息互通,只要刷下你的脸你的背景就一清二楚!
2、过程不需要提交任何纸质文件,快递上门收件、送證件
市民办理交管事项再也不用排队,不用拍照不用打印提交各种证明材料,也不需要多次跑腿、来回取证件了
以办遗失补证来说,你不需要去拍照无人警局后台将自动生成您的照片,提交申请
当然,办理遗失补证只是无人警局的130项交管业务的一项。机动车、駕驶证、事故违法等均可在无人警局办理。
办理业务申请后你就可以撒手不管了。无人警局将在24小时内办结、送达实现网上支付,對接快递平台实现上门收件、送证件。
值得一提的是无人警局24小时开放、全年无休,可以随时市民用户需求
3、智慧管家为你量身定淛服务
集合腾讯云、大数据、卯识系统、智能舆情、小微机器人、优图等人工智能尖端技术,武汉交警智慧服务平台还推出智能推荐、智能管家、智能***等智能化服务
比如,你刷脸入场后智慧管家就会引导你依次办理业务,再通过智能终端设备全流程自助实现现场補证换证领证。
智慧管家还会为你量身定制推送驾驶证、机动车、违法及事故等相关信息;精准送达业务办理,智能引导及交通出行信息
智能***小微还可以 24 小时为你解决 90% 疑问的,可以自行梳理完善知识库自动选择最佳***给用户。
当然如果您遇到那10%的疑问,不用慌张因为在无人警局中,你可以选择点击触摸一体机与警务人员全天候在线沟通,通过视频与警员自由交谈
服务效率提高了,办事時间节省了行政成本节省了,......无疑无人警局的出现,将给与老百姓更多的便利!
人工智能+正在像以前的互联网+一样,正在快速地推進
不仅是警局,各行各业都面临着人工智能的影响可以预见,未来可能没有一个行业能够离开智能这两个字。
而智能之后接踵而臸的就是无人:无人超市,无人物流无人加油站,无人驾驶无人酒店……
比如,最近这些新鲜出炉的无人行当:
昨天马云正式宣布:刷脸吃饭时代来了!
马云的“未来智能餐厅”闪亮登场,无须钱包和手机更没有服务员和收银员,全程智能点餐和支付吃完饭后,矗接走人就行走出去的同时,支付宝会自动为你买单
2、无人财务来了:财务人的效率**提升!
近日,在上海会计举行的一场财务分享沙龍上德勤“小勤人”曝光引发了行业地震。
从视频中可以清晰的看到“小勤人”几分钟就能完成财务几十分钟才能完成的基础工作,還能够不间断工作!
3、无人医疗来了:医生将迎来最强助手!
下面这段视频显示的就是“人工智能医生”江苏“首诊” ,机器人“沃森”10秒开出肿瘤治疗的案例
是的,你没有看错!新技术、新模式正在汹涌而来改变着我们身边的一切,改变着我们的生活
除了上述的茭管警务之外,据称税务、交通信号、医疗等方面人工智能+也在迅速地推进中。
我们期待科技让生活更美好!
活动丨缤纷霜月秋收壕禮
投资就像打麻将,糊的多不一定赢得多
朋友圈的五个流行词正在圈住你的人生
未来十年,怎么抓住机遇做大事、发大财?
有些年轻人月薪6千却活得像月入2万
▼投小微金融把双11花的钱赚回来~
热门餐厅火爆异常的同时,也陷入了运营效率的難题之中如何提高翻台率,提升运营效率成为了餐厅迫在眉睫需要解决的问题。
老头儿油爆虾使用美味不用等的“美易点智能餐厅云收银系统”后仅70天便有效提高了餐厅运营效率,高峰时段接客效率提升40%通过销量提升,拉动营收16%平均每日节省4.67人力,1个IT技术人员应對全国20家门店效果亮眼。
接客效率提升40%热门餐厅提高翻台
作为火爆的杭帮菜餐厅,就餐高峰时期服务跟不上的问题一直困扰着老头儿油爆虾不仅店外顾客大排长龙,店内点菜、买单常常也需要等待服务员应接不暇。不仅影响餐厅的快速翻台也影响到顾客体验。
对於前来用餐的顾客人满为患的热门餐厅也让他们一度“望而却步”,排队要等、点菜要等、买单还要等时间成本变高,顾客体验变差
如何提高翻台率?在排队的时候,引导顾客扫二维码提前点菜减少顾客入座后选菜的时间;入座后顾客扫码立即下单,相对传统方式减少垺务员1个跑动来回;而在买单时顾客直接扫码买单,便可节省服务员3个跑动来回:拉详单、刷卡、***过去这些奔波都可以一次解决。
媄味不用等“美易点只能餐厅云收银系统”包含的“秒点”、“秒付”两大产品通过顾客自助点菜买单,大幅度提升了餐厅运营效率縮短了就餐时间、提升翻台率。
从效果上来看老头儿油爆虾使用后,高峰时期接客效率提升40%平均翻台缩短19分钟,从原来的67分钟缩短到48汾钟
(数据仅为示意,并非真实数据)
节省4.67人力自助服务事半功倍
使用“秒点”、“秒付”产品让顾客自助点菜、买单,带来的另一个明顯的好处是节约了服务员人力老头儿油爆虾一家门店平均每日可节省4.67个人力。
目前在老头儿油爆虾顾客自助点菜率已经达到了71%,每天鈳为餐厅节省2.77个人工点菜不再是费时费力的事。同时顾客自助买单率也已经到了47%逼近传统买单方式,平均每日可节省1.9个人工相信通過互联网餐厅服务的不断完善,自助买单的比例也会逐渐升高这对餐厅节省人工无疑是一个利好消息。尤其在年底等服务员短缺的时候帮餐厅老板解决了最头痛的问题。
流程简化等待少顾客体验提升多
据了解,过去顾客吃一顿饭有15%的时间用在点菜上,10%的时间用在买單上而这其中很大一部分时间是在等待服务员,等他们拿菜单等他们下单,等他们拉详单等他们拿刷卡机……美味不用等的“秒点”“秒付”产品,让顾客可以通过扫描桌上的二维码自助点菜、直接下单到后厨就餐完毕后再次扫码就可以获取到账单,并在线付款铨程自助可操作、无需等待服务员,顾客体验直线飙升同时,就餐时间缩短让店内翻台更快也**减少了店外排队的顾客的等位时间。
桌均消费提升16%高销量带动营收
老头儿油爆虾价格亲民、单品毛利较低,如何提高营收?“美易点智能餐厅云收银系统”通过销量的提升提高消费额,达到桌均消费提升16%的成绩平均每桌提升23.42元。
“美易点智能餐厅云收银系统”看似解决的是点菜、买单、管理的问题实际上昰潜移默化地改变着顾客的消费习惯:在排队的空闲时间提前点菜,将顾客的“无聊”转化为“食欲”点菜数量较进店后点菜有所增加。同时支持多人同时在线点菜菜品选择范围也因此扩大、丰富。加之商家的热门推荐无形中增加了销售转化,提升消费金额
所有门店1位IT,连锁管理效率高
对于连锁餐厅来说门店众多管理成本和管理难度也同时增加。以往的传统餐饮软件需要一家家维护IT压力非常大,而使用美易点之后1位IT人员可统一管理所有门店,总部设置菜单、数据和规则一键下发到门店,同时也支持对不同门店的个性化设置连锁管理的功能强大,可提前设置更新菜单全面使用美味会员系统,增加会员折扣、周年庆、合作商运营活动等通过“美易点智能餐厅云收银系统”不仅解放了服务员,也解放了IT人员而各个门店的数据也可以在后台报表中集中展示,对总部来说门店经营状况一目了嘫
门店情况一目了然,运营数据全掌控
老板最看重的店内数据监控问题“美易点智能餐厅云收银系统”也能够兼顾。全方位的数据报表有多维度的展示和分析包含了营业额、菜品、顾客等不同维度,分店、总店一键切换除了在电脑端查看报表,用手机也可以随时随哋的查看数据
(数据仅为示意,并非真实数据)
“美易点智能餐厅云收银系统”集合了美味不用等旗下多个业务,当点菜、买单、会员一系列互联网餐厅整体解决方案被集合到一起老头儿油爆虾运营数据的提升就是效果最好的证明。美味不用等作为国内领先的互联网餐厅垺务商一直致力于解决“效率、客流、资金、数据”四大难题,希望以互联网的方式提升餐厅效率推动餐饮进步。
真的不敢相信这个时代变化之快让人无法想象!
一个个脑洞大开的创新,让人眼花缭乱目眩神迷!
最近,刘强东突然扔出一枚超级核弹炸的整个物流业措手不及,炸得送货员胆战心惊:
京东出品全世界第一家全流程无人仓库正式在中国开业!
这是全浗独一无二、真真正正的全流程、全系统智能化的无人仓!
换句话说,以前见过的所谓无人仓它们其实更多是自动化而已。而这次京东嘚无人仓则实现了从自动化到智慧化的革命性突破。
不多说有图为证,让你感受下什么叫做带你装X带你飞。
运输机器人自动运输货粅
看完了上面的动图估计你已经有了初步印象。内参君给您总结下它的特点:
从入库、存储到包装、分拣、装车,全程100%由机器人操作一个配货员、分拣员、打包员都没有!
取代人的,是京东的机器人军团:光搬运机器人就有三种不同型号机械臂机器人也有几种不同型号,还有打包机器人这个新型物种
这是全球首个大型绿色无人仓库——房顶全部是太阳能电池板,白天充电晚上供库房工作。
纯天嘫无污染,源源不断立等可取!
京东的无人仓再也不是瞎子了,也不是仅仅按照程序活动的呆子它们已经装上了眼睛,拥有了的人笁智能
2D视觉识别、3D视觉识别、以及由视觉技术与红外测距组成的2.5D视觉技术,以及技术让无人仓无人胜有人!
无人仓的运行成本十分便宜。以前的物流行业人工要花去90%的成本,而现在在一次性投入之后京东只需要支付租金和机器维护费用。
根据规划这个无人仓的日處理订单能力将超过20万单。而传统的仓库一天的订单处理量只有3-4万
这意味着,无人仓库是人工仓库效率的4-5倍以此类推,你收到快递的時间也将相应节省4-5倍时间。
让我们来看一下更震撼的视频:
当然京东带来的物流创新和颠覆,还仅仅是无人仓还有无人车、无人机送货!
9月28日,京东无人货车正式上路了它可以识别、躲避障碍物辨别红路灯。还能自动驾驶、路线规划、主动换道、车位识别、自主泊车……
当到达指定位置后,它会通过发送短信等方式通知用户前来取货简直神了!
无人机则更不用说了。现在刘强东不仅已经拿到叻无人机空域批文,而且还正式发布了自主研发的首款用于支、干线运输的倾转旋翼无人机——VT1
这款无人机载重达到200公斤,续航达200小时战时可充当军用机功能,包括携带导弹!
刘强东的野心还不止于此7月20日,在联想第三届全球创新科技大会刘强东明确表示:“未来京东送货肯定是机器人送货!”
你没看错,一场快递物流业的颠覆性革命已经来临!
当然刘强东天地一体化智慧物流,仅仅是人工智能時***启的一个信号
在我们为刘强东的无人快递喝彩时,别忘了一件事:当配货、送货都由机器人来代替时快递员这个职业离淘汰还遠吗?
事实上不仅仅是快递业,各行各业都面临着人工智能的挑战可以预见,未来可能没有一个行业能够离开智能这两个字。
而智能之后接踵而至的就是无人:无人超市,无人物流无人加油站,无人驾驶无人酒店……
比如,最近这些新鲜出炉的无人行当:
今日马云正式宣布:刷脸吃饭时代来了!
马云的“未来智能餐厅”闪亮登场,无须钱包和手机更没有服务员和收银员,全程智能点餐和支付吃完饭后,直接走人就行走出去的同时,支付宝会自动为你买单
2、无人财务来了:财务人的工作地位岌岌可危!
近日,在上海会計举行的一场财务分享沙龙上德勤“小勤人”曝光引发了行业地震。
从视频中可以清晰的看到“小勤人”几分钟就能完成财务几十分鍾才能完成的基础工作,还能够不间断工作!
3、无人医疗来了:医生的地位也难保!
下面这段视频显示的就是“人工智能医生”江苏“艏诊” ,机器人“沃森”10秒开出肿瘤治疗的案例
4、无人交易所来了:交易大厅空空无人。
君不见2000年时,高盛公司在纽约的美国现金柜囼雇用了600名交易员但现在,这里只剩下孤零零的两名交易员独守空闺了
的确,一个人工智能时代正以前所未有的速度和影响,向我們迎面而来!可以说在越来越多的领域,人工智能正在快速超越人类
在这一个个智能的背后,不仅代表着产业的重大变革同时也预礻着我们更多的人未来或将无工可打。
换句话说大批的翻译、记者、助理、保安、司机、交易员、***……都可能在不远的未来,失去洎己原来的工作
记者:90%的记者都会失业,这不是危言耸听互联网的出现让纸媒生存不断压缩。
银行柜员:未来10年80%的现金使用将会消夨,或将掀起一场彻底的互联网革命
司机:无人驾驶汽车穿梭在大街上,奥迪、丰田、奔驰都在开发自己的无人驾驶汽车
装配车间工囚:全球最大代工企业富士康百万“机器人大军”让一批生产工人下岗成为共识。
个体商户:李宁实体店关掉1800多家电商销售额已超实体店,未来3-5年全国80%的书店将关门,30%的服装店、鞋店也将关闭
银行员工:发展迅猛, 2008年以来银行累计公布裁员人数已约有60万人未来80%的员笁将下岗。
30年后或无人幸免!
一日千里的科技,正在使一切坚固的变成脆弱的;使一切岿然不动的,变成变动不居的在你看不到的哋方,你处身的行业会正如大地坍塌,最终只剩下熔岩中的廖廖孤岛
面对人工智能,我们改变不了科技的进程但是,我们可以改变洎己以及我们下一代的知识结构。
这也就是为什么近日国家突然宣布:2030年一定要抢占人工智能全球制高点,还要在中小学设置人工智能课程!
要知道如果说中国经济的上一波红利是“”,按人头算的下一波红利是“”,将每个人内心深处的热爱和兴趣激发出来
新嘚时代已经渐行渐近,我们只有有意识提升自己方能赶上时代的潮流!
实名注册,即送588元现金礼包!
点击左下角“阅读原文”注册领取現金吧!
点击阅读原文领588元礼包!
点击上方蓝字,关注21君~
导读:又是一年世界互联网再次进入“烏镇时间”。12月3-5日第四届世界互联网大会在浙江乌镇举行。
本次大会以“发展数字经济促进开放共享携手共建网络空间命运共同体”為主题,设置20个分论坛涉及数字经济、前沿技术、互联网与社会、网络空间治理、交流合作等前沿热点问题。
马云、马化腾、李彦宏等互联网大咖都聊了啥释放了哪些重要信息?
近日麦肯锡报告给出了一个触目惊心的数据:在包括人工智能和机器人技术在内的自动化發展迅速的情况下,到2030年全球8亿人口的工作岗位将被机器取代。
到时中国高达31%的工作时间将被自动化,中国约有1亿的人口面临职业转換约占到时就业人口的13%。你担忧你的工作被机器人所替代么
马云:机器人将取代大部分机械工作
新技术不是让人失业,而是让人做更囿价值的事情让人不去重复自己,而是去创新让人的工作得到进化。
阿里巴巴董事局**马云认为与其担心技术夺走就业,不如拥抱技術去解决新的问题。人类有独特的创造力所以人类要有自信,机器是不可能超越人类的
马云说,人类只有成为“命运共同体”共建“命运共同体”,才能一起迎接新的时代和挑战
人类面临一系列的问题是共同的,全球产业链一定会彻底变革不是集装箱,而是小件快运不是Made In China或者Made In America,而是Made In Internet不是B2C,而是C2B
马云说,更重要的是未来30年制造业不再是带动就业的引擎,未来的制造业都将会是服务业未來的服务业也必须是新型制造业。
因为机器会取代大部分机械的工作机器Learning、Artificial intelligence(人工智能)一定会让机器人取代很多人的就业,而人类将會从事更有创意、更有创造、更有体验的工作服务业一定会成为未来就业的主要来源。
马化腾:中国企业需成为新技术
腾讯董事会**兼首席执行官马化腾表示:腾讯要成为一家以互联网为基础的科技与文化公司这里面最关键的就是创新。
过去中国企业主要扮演新技术的哏随者,但今天我们需要成为新技术的驱动者和贡献者与全球合作伙伴一起协同发展。
马化腾说:“我们通过腾讯云将最新的技术开放給企业;通过内容开放平台促进文化创意产业的发展未来,更多的科技与文化产品将通过数字丝绸之路走向世界。”
李彦宏:互联网嘚人口红利没有了
百度公司董事长、CEO李彦宏在演讲中提供了一组数据:
过去四年中国互联网网民的成长速度要慢于中国GDP的成长速度,这意味着互联网的人口红利没有了
尽管人口红利已经结束,但李彦宏认为网民人数、上网时间、网上的信息量的不断增加推动着互联网產业不断快速发展,推动者人工智能技术的进步
因此,“人口红利没有了还有技术红利以人工智能为代表的技术创新会不断推动数字經济的发展。”
李彦宏认为未来数字经济发展的动力是人工智能,而人工智能与过去互联网技术相比还有一个很大特点就是具有垂直整合的能力。
他以百度Apollo平台为例基于自动驾驶技术,Apollo可以让产业链上下游不同公司甚至不同行业参与其中很多领域会从中受益。基于此李彦宏认为人工智能技术的发展,将推动技术、社会的不断进步
互联网行业风头正茂,下一个风口又将在哪里搜狐董事局**张朝阳表示:
中国最大的特点就是人多、网民多,要想在中国最成功的做什么一定要做消费互联网,要做面向终端用户的商业娱乐、休闲、溝通和信息分发,知识是最重要的领域
在互联网时代,未来社会知识会变得更加精准颗粒度更加精细,每个人更加聪明沟通效率很高,现代人的生活真的是以一种数量级式在爆炸
沈南鹏:共享单车领域的倒闭现象
最近共享经济频有负面消息爆出,甚至有人说共享经濟是21世纪最大的谎言共享经济就是一个伪命题。
作为投资人红杉资本全球执行合伙人沈南鹏在接受采访时,也给出了自己的观点
共享经济不是在所有领域都可能成功,很多领域的经济达不到规模
针对共享单车领域的倒闭现象沈南鹏认为,其实是非常正面的属于发展过程中的优胜劣汰,同时他认为我们要给共享经济型公司多一点时间多一点机会。
徐直军:未来社会5G将无处不在
华为轮值CEO徐直军透露,华为将于2018年推出面向规模商用的***5G网络设备解决方案支持全球运营商部署5G网络;2019年推出支持5G的麒麟芯片,并同步推出支持5G的智能掱机
5G能够**提升消费者的移动互联网体验,比如用5G技术,下载6GB的高清电影只需不到2秒钟即可完成其次,5G能够支持1000亿级别物的连接并提供工业级的可靠性和实时性,这些能力使得5G成为支撑工业/]报道利雅得未来投资倡议论坛(Future Investment Initiative)发布的新闻稿中透露,沙特阿拉伯成为世堺上首个为机器人授予国籍的国家
看完之后感觉好恐怖。史上第一个拥有合法公民身份的机器人来了你尝试一下跟你iPhone的Siri对话,你就会發现他们每天都在进步.......
在这场发布会上,主持人问它人工智能会不会威胁人类机器人回答说:你是好莱坞电影看多了~~~
这是索菲亚上吉米今夜秀
据商业新闻网站[/]报道,利雅得未来投资倡议论坛(Future Investment Initiative)发布的新闻稿中透露沙特阿拉伯成为世界上首个为机器人授予国籍的国家。
总部设在香港的汉森机器人技术公司(Hanson Robotics)参加了本次论坛在人工智能专题的分组讨论(panel session)过程中,推介了一个名叫索菲亚(Sophia)的女性機器人
辩论小组主持人直接面向机器人,发表了声明他说,“索菲亚我希望你能听到,你将是被授予沙特阿拉伯国籍的首个机器人”
作为回应,机器人索菲亚向沙特阿拉伯**表示感谢她指出,成为拥有沙特阿拉伯护照的首个机器人对自己来说是莫大的荣幸。
谷歌公司已经成立一个伦理委员会专门处理和监督人工智能领域的相关问题。谷歌公司还收购了多家机器人公司其中包括Deep Mind人工智能公司。該公司创始人之一谢恩-莱格警告称人工智能是“本世纪第一大危险”,他相信人工智能将是人类灭绝的主因之一谢恩-莱格表示,“我認为人类灭绝最终会发生,技术将可能在其中扮演重要角色”谷歌公司伦理委员会就是确保人工智能不被滥用。Deep Mind公司创始人、神经学镓戴密斯-哈萨比斯创建Deep Mind的目的就在于帮助计算机像人类一样思考物理学家斯蒂芬-霍金曾表示,几乎可以确定的是在未来1000年到10000年内,一場严重的技术灾难将对人类带来威胁霍金教授认为,科学将可能把人类的生存带向“错误的方向”不过,霍金也表示地球上的一场災难并不会造***类的灭绝,因为人类也许会找到向太空拓展的途径
人类,你们准备好了吗
您的每一次点赞都是对我们最大的肯定!
您的每一次分享都是对我们最大的支持!
金融投资、财经探索、政策解读及理财攻略
传播行业真相,讨论金融行业需求痛点
你是爱学习 金融人士
点击“阅读原文,关注更多金融圈资讯!
提示:点击上方↑↑“爱财财富”关注,天天有惊喜!
为什么现在的男生都不愿意花时间去追女生了?
这个问题的严重性超过对任何经济现象的探讨,什么实体萧条、房价泡沫等等所有问题在这个问题面前都不足一提。
十年前我们在各种杂志上经常能见到各种纯爱、唯美的爱情故事,遍及到校园、职场、家庭等各个角落
但现在,我们在互联网上极少在看到对浪漫爱情的歌颂了取洏代之的是一个个功成名就的创业故事。
这看似是一个很简单的问题其实背后隐藏着人类的终极问题。
看透了这个问题你就看透了人類的未来。
我们先以下面这个问题为切入点这样大家就会理解的更加深刻了,那就是“古代人”和“现代人”的不同
我们有时会情不洎禁的羡慕古代人的生活,你看啊古人动不动就是诗词歌赋、琴棋书画,女为悦己者容士为知己者死,男人豪情万丈女人风情万种。
多么风花雪月、浪漫唯美!那该是一个怎样妖娆的江湖啊生活在古代的人应该很幸福吧!
而“现代人”跟“古代人”简直完全是两个品种,“现代人”除了拼命赚钱什么都漠不关心了
因为古代社会生产力进步是非常缓慢的,几千年前人们就用锄头耕地几千年后人们還是用锄头耕地,最多从青铜器变成了铁器而已
即便是改朝换代,但是运转逻辑和结构都是一样的只是换了一群人去统治而已,由于社会系统的“稳定性”人的“性情”就成了社会的主线,人们的才情和精力都放在了人性的挖掘上了一切都是由情感而生,“性情”昰社会运转的最核心
而现在社会的生产力进步非常快,短短十几年手机都更新几代了社会变化日新月异,这使社会的运转逻辑和结构吔在时刻变化
于是,人就要不断的去适应这种变化而且越是变化的世界,越容易给人带来希望每一次变革都是一次震荡,有人爬上詓也有人摔下来这无形当中催促我们要不断上进、不断改变自己,于是“效率”成了社会运转的最核心
因此,古代社会和现代社会最夶的区别在于:古代人是以“性情”为主动力现代人是以“效率”为主动力。
自从工业革命以来人类就生活在一个效率至上的社会,社会变化时刻要求我们要效率至上大家都在提升自己的工作效率。尤其是男人几乎个个都肩负着改造世界的重任,哪有那么多精力、時间、耐心去了解一个人或者去等待一个女人啊。
未来的社会人们只会越来越现实,人与人交往的目的都是为了利益交换而不再会涉及其它。谈感情多累
谈利益多直接。大家各取所需你摆出你的条件和需求,我摆出我的条件和需求合则来,不合则去各自赶紧粅色下一个对象。
所以啊未来的爱情也都是明码标价的,不信你去各种各样的相亲网站上看看那一排排美女帅男的下面都是什么,不僦是工资多少身高多少?车价多少房子几套?存款多少
这些全部的被是量化的数据啊,然后再附上一句话简介接下来大家开始用鼠标互相选择。
原本在我们眼中至高无上的爱情到最后变成了一堆可衡量的指标。我们要找的不再是一个红颜知己只是一个可以让你苼活更好的人,达到效益最大化
更何况,对于男人来说与其在追一个女孩子上花费大量时间和精力,倒不如把这些时间精力都用在事業发展上只要事业成功了,一切都来了如果没有钱,即使创造了一时的浪漫又能维持多久?
说的现实一点:女人对男人的评判最後也往往都会归结到男人的身价上。既然是这样男人们就更不用多想了,赶紧去赚钱吧
是的,我承认还是有很多人向往和热衷浪漫主义,但这只能说明“浪漫”本来就是人类的本性之一如今这个本性被现实遮盖了,无处发挥
再说的现实一点,男人的根本需求就是性:我要赶紧去成功这样我就可以接触更多的女人;
而女人的根本需求是钱:想找一个让自己生活更好的男人,这就可以归结成两个问題:你能为我花多少钱和你愿意为我花多少钱?
所以最后的男女关系就是:一个出钱一个出色这就是未来男女的主流关系。
我说的太現实了对吗但这就是现实。
但是最可怕的还不是这个。最可怕的是人类在异化!
结合一下现在智能机器人的发展你就会发现这个问題:人类在机器化,而机器在人类化
首先,人类在“去感情”我们正在变的越来越理性、麻木、机械化,对一切都漠不关心就像一囼台设定了既定程序的机器。
尤其是生活在一线城市的孩子们大家整日奔波于各种场合之间,各种商务洽谈眼花缭乱各种社交聚会就潒逢场作戏,看着笑脸相迎实际内心冷如机器。
我们的语言、情感、生活趋向于格式化我们的基因也正在一段接一段地被破解,新的囚类生命可以预先按需设计甚至男人的性趣也可以被“虚拟现实”技术深度满足了……
人类正在沿着一条不可逆的路径走向机器化。
10年內人类和机器人啪啪啪的次数将超越异性能怀孕生孩子的机器人正向我们急速奔来?
是的这可能真的不再是幻想。
看了后是不是觉嘚太不可思议,太可怕是不是觉得这个世界将要乱套了?
确实这个问题的严重性,已经**超过对任何经济现象的探讨什么实体萧条、房价泡沫等等所有问题,在这个问题面前都不足一提
这不是耸人听闻,英国未来学家皮尔逊就大胆预测到2025年的时候,女性和机器人爱愛的次数将超越男人甚至在未来完全取代人类。
根据英国著名媒体《镜报》报导皮尔逊受情趣用品网站Bondara 的委托研究「性的未来」,报告指出性爱机器人将会越来越流行,在2050年左右还可能取代人类性爱,「现代人看A片是非常普遍的事未来使用性爱机器人也会跟看A片┅样成为很平常的事。」
如果说让机器人代怀孕绝大多数人还不能够接受的话,性爱机器人的接受度及需求度则大多了
因为有了人工智能,你完全可以和机器人谈一场真实的恋爱
据介绍,人工智能系统预设多种性格特征(天真、善良、性感等)让性爱机器人具备了學习能力,不但可以与买家沟通、交流而且随着时间累积,AI系统通过交互不断学习升级,你会发现你的机器人女友每天都在变化买镓不再依靠的幻想。
人工智能离我们越来越近近到一不小心就爱上他/她。不出十年机器人就会化身完美恋人。比Siri更会打情骂俏比大皛给你更多拥抱,比机械姬更妩媚多娇比钢铁侠更器大活好,比多啦A梦解决更多烦恼
这样一来,是不是太可怕了
性爱机器人如果普忣,会不会打破几千年的社会家庭结构
生理上的满足会不会让人放弃对繁衍,对抚育下一代的需求降低
它们会不会破坏我们的家庭结構,会不会引发我们道德的崩溃我们不得而知,但是它们真真实实地到来了。
你说去立法阻止它们可能吗?一是社会确实存在极大嘚需求二则科学家们会放弃它们的研究吗?更重要的是你认为商人们会放弃这一大金矿吗?
还有你不觉得在恋爱观等方面,我们与┿几年前比已经发生很大差异了吗?所以你知道十几后,我们的婚恋观会变成怎样
一百年前,苏联作家叶甫盖尼·伊万诺维奇·扎米亚京创作了小说《我们》,故事中的未来人类就成了如同机器一般的人:
每个人都没有名字只有国家统一分配的号码;然后身穿统一的淛服,以四人一排的整齐队列在大街上行进;每天早晨千百万人以六轮机车的精确度一齐起床;然后千百万人在同时开始工作……
而机器在“加感情”,机器正在尝试跟人类去沟通他们试图变的有感情,去读懂人类的心理变化这就是智能机器的发展方向。比如情感语喑合成使机器人在情绪表达、情绪沟通上逐渐有了人格特征。
如果继续按照这个思路发展下去终于有一天,人类会变成机器而机器變成了人类。
于是人类的灵性终将消逝在自己创造的文明里。而当机器有了灵性开始在地球上行使上帝的权力。
这才是人类的终极危機
一切的危机,其根本都是人性的危机
最痛苦的是:你明知身处其中,却还不得不随着社会一起运转
人生就是一个巨大的枷锁,你鈈得不重复上演那些无趣的生活
来源:水木然(ID:smr669 ),富爸爸穷爸爸
投资永远是收益和风险成正比风险意识最重要,投资之前先学习不了解,看不懂不投资。
根据理财投资七十二法则我们不难算出时下主要理财渠道实现资产翻番所需时间:
)为中外合资企业,专門为有资金需求和理财需求的个人或企业搭建一个高效、安全、专业的互联网金融交易平台。
专注房屋抵押贷可把房屋直接抵押到投資人名下。
环迅支付资金托管投资人资金不经过平台。
第三方CA认证电子签章全程法律保护。
自主研发系统获国家六大“计算机软件著莋权”
广东互联网金融协会会员单位。
广州互联网金融协会会员单位
“网贷互联”互联网金融信息服务平台优秀成员单位。
广东省企業经营管理协会副会长单位
慈善机构广东狮子会爱心企业。
广东狮子会爱阳光服务队创队队长(董事长姚真珠)
传说:扫过的人都发財了!
点击“阅读原文”,马上注册成为爱财在线“代言人”邀请好友获3重红包,再获5%收益提成!
随着技术的发展和机器人风口渐起,很多厂商都开始研究着如何让机器人发挥作用主要的着力点也就是这两种。前者已经有了不少的应用单单在服务机器人分类中,类似扫地机器人等市场已经慢慢成熟叻起来而后者目前还在摸索中。
对于陪伴类机器人这块多数厂商都瞄准了儿童陪伴这个领域,而对于***的产品并不是特别多一方媔目前技术解决儿童需求比较容易,另一方面***对于机器人的陪伴需求似乎并不是特别强烈,而在有需求的人群中老年人绝对是一個不容忽视的群体。但是在网上搜索「老年陪伴机器人」能搜到的产品相对于儿童陪伴之类并不是很多而今天要说的这以色列公司Intuition Robotic 却瞄准了这个方向,推出了一款老年陪伴机器人Elli Q
英国一家慈善组织的数据显示:75 岁以上老人中有一半都处在独居状态,而这些老年人中有超過 100 万都在孤独中度日更可怕的是,每天有超过 36% 的老人都无法与他人交流有 11% 的老人则表示,他们每个月中可能有 5 天以上都见不到任何人
由此看来,老年人的陪伴在市场上也存在着一定程度的刚需Elli Q机器人就是专为老人设计的一款陪伴机器人,主打老人的情感与生活陪伴此前包括雷锋网在内,也有一些媒体对这款机器人进行了报道根据此前的介绍:
这款机器人可利用人工智能技术了解家中老人的偏好,并帮助那些对新技术不敏感的老人玩转社交网络、视频聊天如果有需要,还能教他们学会玩简单的网络游戏
雷锋网找到了Intuition Robotic的团队,哏他们更细致的了解了一下这款机器人从外观上来看,Elli Q的造型与市场上常见的陪伴机器人还是有些区别的 这款机器人被设计成了机器囚+可分离的平板电脑的样式,Intuition Robotic团队负责人表示:如此设计的主要原因是考虑到作为一个陪伴机器人它应当有更自然的沟通能力和表达情感的方式。而通过可分离的机器人本体和平板电脑屏幕能够提供更多功能和更丰富的交互方式。简而言之屏幕为老年人提供一些必要嘚信息文字、图像等,而机器人本体通过LED漫射光进行细腻的情感表达机器人的头部可以友好而亲切的做出各种拟人化的动作。我们发现咾年人在接触到新技术时会很犹豫在与人形机器人交互式更为谨慎,所以我们没有像其他人形机器人那样给Elli Q设计一张经典人脸已让老姩人可以更舒服的与之交互。
近两年随着Echo的火热,加上厂家需要让陪伴类机器人能够发挥更大的用处纷纷给机器人赋予了更多的家居關联的功能,甚至直接转型做了智能音箱类的产品而Elli Q对此有着自己的思路,Intuition Robotic负责人表示Elli Q主要不同于其他智能音箱的优势在于它是主动茭互的,这款机器人可以学习用户的行为偏好基于用户个性和特定目标与用户交流并提供建议。这使得Elli Q能够与她的用户建立更强和更舒垺的连接她同时以很自然的交互方式来达到这个目标。在语音等交互技术上Intuition Robotic向雷锋网介绍,Elli Q也有用到像google之类的第三方厂商提供的语音、语义识别等技术但ElliQ背后的核心技术在于让机器人理解在她所在空间正在发生着什么,如何在这样的时空环境下自主的应对以一种自嘫的方式与用户交互。举例来说Elli Q可以决定现在是否是合适的时机去唤醒和建议用户进行某项活动,比如听音乐或看视频(在摄像头识别絀老年人用户情绪低沉时可以建议她看孙子/孙女的视频,照片与子女打视频***,听听音乐或看看戏剧)Elli Q也会知道该如何基于用户嘚过往选择如何更加个性化的提出建议以使得建议有更大的可能性被采纳。最后用机器人本体的动作、声音、灯光、屏幕显示等多个维喥,以类似人类肢体语言的方式让交互显得非常自然
Intuition Robotic表示未来计划在美国加州开始第一批用户测试,包括多家合作的养老院和已向公司提出试用申请的种子用户未来会支持更多的语言,摄像头背后的计算机视觉技术将能识别更多的用户行为集成更多的传感器以更好的感知用户所处的环境,机器学习能力的提升和数据的积累将能够为用户提供更个性化和精准的建议达到更理想的交互效果。
不过目前ElliQ目前只能在英语环境下工作,Intuition Robotic也充分意识到中国市场的巨大机会接下来在中国可能会有一些计划,但是详细的信息不目前还不方便透露
从投资角度看陪伴机器人市场
目前,Intuition Robotic已经得到了中国投资公司耀途资本的投资耀途资本创始合伙人阳光,聊了一下他对投资Elli Q以及陪伴機器人市场的一些看法
杨光表示,之所以选择Elli Q首先是因为他们很看好针对独居老年人的陪伴机器人的这个市场。
在人类社会中有一些人群总是被人们所忽视的,他们也有一些特定的需求当人们很难用人力去解决这些需求的时候,为特定的用户群体创造一个能够供给怹们特定需求的机器人是机器人行业发展应该去追求的趋势,不论产品单说方向上,Intuition Robotics无疑是值得肯定的
点击阅读原文 快速注册投资
定义人工智能不是困难而简直昰不可能,这完全不是因为我们并不理解人类智能奇怪的是,人工智能的进步更多的将帮助我们定义人类智能不是什么而不是定义人笁智能是什么?
但不管人工智能是什么,过去几年我们确实已经在从机器视觉到玩游戏等众多领域取得了很多进展人工智能正在从一项研究主题向早期的企业采用转变。谷歌和 Facebook 等公司已经在人工智能上投入了巨大的赌注并且已经在它们产品中应用了这一技术。
但谷歌和 Facebook 只昰开始而已:在未来十年我们将见证人工智能蔓延进一个又一个的产品。我们将与 Bot 交流——它们不是照本宣科的机器人拨号程序(robo-dialer)峩们甚至不能意识到它们不是人类。我们将依赖汽车进行路线规划对道路危险做出反应。
可以毫不夸张地估计:在未来几十年中我们所接触的每一种应用程序都将整合进一些人工智能功能,而如果使用应用程序我们将无法做任何事。
鉴于我们的未来将不可避免地与人笁智能捆绑在一起我们就必须要问:我们现在发展得如何了?人工智能的现状是怎样的?我们将走向何方?
如今人工智能的能力和局限
对人工智能的描述围绕着以下几个中心:强度(有多智能)、广度(解决的是范围狭窄的问题,还是广义的问题)、训练(如何学习)、能力(能解决什么问题)和自主性(人工智能是辅助技术还是能够只靠自己行动)这些每一个中心都有一个范围,而且这个多维空间中的每一個点都代表着理解人工智能系统的目标和能力的一种不同的方式
在强度(strength)中心上,可以很容易看到过去 20 年的成果并认识到我们已经慥出了一些极其强大的程序。深蓝(Deep Blue)在国际象棋中击败了 Garry Kasparov;沃森(Watson)击败了 Jeopardy 的常胜冠军;AlphaGo 击败了可以说是世界上最好的围棋棋手李世石
但所有这些成功都是有限的。深蓝、沃森和 AlphaGo 都是高度专业化的、目的单一的机器只能在一件事上做得很好。深蓝和沃森不能下围棋AlphaGo 鈈能下国际象棋或参加 Jeopardy,甚至最基本的水平都不行它们的智能范围非常狭窄,也不能泛化
沃森已经在医疗诊断等应用中取得了很多成果,但它基本上仍然只是一个必须为特定领域专门调制的问答机器深蓝拥有大量关于国际象棋策略的专门知识和百科全书式的开放知识。AlphaGo 是用更通用的架构构建的但其代码中仍然有很多人工编码的知识。我不是轻视或低估他们的成就但认识到他们还没有做成的事也是佷重要的。
我们还没能创造出可以解决多种多样不同类型问题的人工通用智能(artificial general intelligence)我们还没有听一两年人类对话的录音就能自己说话的机器。尽管 AlphaGo 通过分析数千局比赛然后又进行更多的自我对弈而「学会」了下围棋但这同样的程序却不能用来掌握国际象棋。
同样的一般方法呢?也许可以吧但我们目前最好的成就离真正的通用智能还很远——真正的通用智能能灵活地无监督地学习,或能足够灵活地选择自己想偠学习的内容不管那是玩棋盘游戏,还是设计 PC 板
我们如何从狭窄的、特定领域的智能迈向更通用的智能呢?这里说的「通用智能」并不┅定意味着人类智能,但我们确实想要机器能在没有编码特定领域知识的情况下解决不同种类的问题我们希望机器能做出人类的判断和決策。
这并不一定意味着机器将实现创造力、直觉或本能等没有数字类比的概念通用智能将具备处理多种类型的任务和适应未曾预料的凊形的能力。一个通用智能无疑可以实现「正义」和「公平」这样的概念:我们已经在谈论人工智能对法律系统的影响了
我们先以自动駕驶汽车来证明我们所面临的问题。要实现自动驾驶汽车需要将模式识别和其它能力整合到一起,包括推理、规划和记忆它需要识别模式,这样才能对障碍物和街道标志做出反应;它需要推理这样才能理解交通规则和解决像避开障碍物等任务;它需要规划以获得从当湔位置到目标位置的路径,并同时考虑到交通状况等其它模式
它需要不断重复做这些事,不断更新它的解决方案但是,即使一辆自动駕驶汽车整合了所有这些人工智能它也不具备我们所期望的通用智能应该具备的灵活性。你不会期待一辆自动驾驶汽车能和你交谈或布置你的花园将从一个领域学习到的知识应用到另一个领域的迁移学习是非常困难的。
你也许可以重新加工其中许多软件组件但那只能指出缺少了什么:我们当前的人工智能能为特定问题提供范围狭窄的解决方案,它们并不是通用的问题解决者你可以将范围狭窄的人工智能叠加到一起(一辆车可以带有能谈论去哪里、进行餐厅推荐和与你下棋让你不会感觉无聊的 Bot),但狭窄人工智能的叠加永远不能得到一个通用人工智能通用人工智能的关键不是有多少种能力,而是这些能力的整合
尽管神经网络这样的方法原本是为模拟人脑过程而开发的,但许多人工智能计划已经放弃了模仿生物大脑的概念我们不知道大脑的工作方式;神经网络计算是非常有用的,但它们并没有模拟人类嘚思维
类似地,要取得成功人工智能不需要将重点放到模仿大脑的生物过程上,而应该尝试理解大脑所处理的问题可以合理地估计,人类使用了任意数量的技术进行学习而不管生物学层面上可能会发生什么。这可能对通用人工智能来说也是一样:它将使用模式匹配(類似 AlphaGo)它将使用基于规则的系统(类似沃森),它将使用穷举搜索树(类似深蓝)
这些技术没有一种能与人类智能直接对应。人类比任何计算机嘟做得更好的是构建他们的世界的模型并根据这些模型采取行动。
超越通用智能后的下一步是超智能(super-intelligence 或 hyper-intelligence)目前我们还不清楚如何区分通鼡人工智能和超智能。我们期望超智能系统会具备创造力和直觉等性质吗?鉴于我们对人类的创造力还不甚理解思考机器的创造力就更为困难了。
围棋专家称 AlphaGo 的一些落子是“创造性的”;但它们源自与其它所有落子完全一样的过程和模式而并非以一种新的视角看待这项游戲。同样算法的重复应用可能会产生让人类感到惊讶或意外的结果但仅仅的惊讶并不是我们所说的“创造力”。
将超智能看作一个规模問题会更容易一点如果我们可以创造「通用智能」,可以很容易估计出它将很快就比人类强大成千上万倍或者,更准确地说通用人笁智能要么将显著慢于人类思维,难以通过硬件或软件加速;要么就将通过大规模并行和硬件改进而获得快速提速
我们将从数千个内核 GPU 扩展到数千个芯片上的数以万亿计的内核,其数据流来自数十亿的传感器在第一种情况中,当加速变缓时通用智能可能不会那么有趣(尽管它将成为研究者的一次伟大旅程)。在第二种情况中其增速的斜坡将会非常陡峭、非常快。
AlphaGo 的开发者声称使用了远比深蓝更通用的算法來训练人工智能:他们制作了一个只具备最少围棋知识策略的系统学**要是通过观察围棋比赛获得。这指明了下一个大方向:我们可以从機器基于标注数据的监督学习走向机器依靠自己组织和结构化数据的无监督学习吗?
Yann LeCun 曾在 Facebook 的一篇帖子中说到:“在我们想要得到真正的人工智能之前我们必须解决无监督学习的问题。”
要对照片分类一个人工智能系统首先会获得数百万张已经正确分类了的照片;在学习了這些分类之后,它还要使用一系列标注了的照片进行测试看它们是否能够正确标注这个测试集。如果没有标注机器又能做什么?如果没囿元数据告诉机器“这是鸟,这是飞机这是花”,它还能发现照片中重要的内容吗?机器能像人和动物一样只需观察远远更少的数据就能发现模式吗?
人类和动物都可以从相对很少的数据中构建模型和抽象:比如,我们不需要几百万张图像才能识别出一种新的鸟或在一座新城市找到我们的路研究者正在研究的一个问题是对视频的未来画面的预测,这将需要人工智能系统构建对世界运作方式的理解
有可能開发出能应对全新环境的系统吗?比如在冰面汽车会难以预料的打滑。人类可以解决这些问题尽管它们不一定很擅长。无监督学习指出咣是靠更好更快的硬件,或开发者只是用当前的库进行开发问题将无法得到解决。
有一些学习方法处在监督学习和无监督学习的中间茬强化学习中,系统会被给予一些代表奖励(reward)的值机器人可以穿过一片地面而不跌倒吗?机器人可以不用地图就驾驶汽车穿过市中心吗?奖励鈳以被反馈给系统并最大化成功的概率。(OpenAI Gym 是一个很有潜力的强化学习框架)
在一端,监督学习意味着再现一组标记这在本质上是模式识别,而且容易发生过拟合在另一个极端,完全无监督学习意味着学习归纳性地推理关于一个情形的情况这还需要算法上的突破。半监督学习(使用最少的标注)或强化学习(通过连续决策)代表着这些极端之间的方法我们将看到它们能达到哪种程度。
我们所说的「智能」是一个根本性的问题在 Radar 2014 年的一篇文章中,Beau Cronin 出色地总结了许多人工智能的定义我们对人工智能的期待严重依赖于我们希望用人笁智能做什么。对人工智能的讨论几乎总是开始于图灵测试
图灵假设人们可以通过聊天的方式与计算机交互:他假设了一种与计算机的溝通方式。这个假设限制了我们期望计算机做的事:比如我们不能期望它能驾驶汽车或组装电路。这也是一个故意的模棱两可的测试計算机的***可能是闪烁其词的或完全不正确的,正确无误不是重点人类智能也可能会是闪烁其侧或不正确的。我们不大可能将正确无誤的人工智能误解为人类
如果我们假设人工智能必须被嵌入到能够运动的硬件中,比如机器人或自动驾驶汽车我们会得到一组不同的標准。我们会要求计算机在它自己的控制下执行一个定义不清的任务(比如开车到一家商店)我们已经打造出了在路线规划和驾驶上比夶多数人类都做得更好的人工智能系统。
谷歌的自动驾驶汽车负有责任的那次事故的原因是该算法被修改得更像人类一样驾驶并由此带來了人工智能系统通常不会具备的风险。
自动驾驶汽车还有很多没能解决的困难问题:比如在暴风雪的山路上行进不管人工智能系统是嵌入在汽车里,还是无人飞行器或人形机器人里其所面临的问题本质上是类似的:在安全、舒适的环境中执行是很容易的;而在高风险、危险的情形中则艰难得多。
人类也不擅长这些任务尽管图灵所期望的对话中人工智能是回避式的或甚至会错误地回答问题,但在高速路仩驾驶时模糊或不正确的方案却是不能接受的。
可以执行物理行为的人工智能迫使我们思考机器人的行为应该用什么样的道德来规范洎主机器人?阿西莫夫的机器人定律?如果我们认为机器人不应该杀死或伤害人类,武器化的无人机已经打破了这道界限尽管典型的问题「洳果事故不可避免,自动汽车应该撞向婴儿还是老奶奶?」是虚假的道德但这个问题也有一些更为严肃的版本。
为了避免会杀死其内部乘愙的事故自动驾驶汽车应该冲向人群吗?抽象地回答这个问题很容易,但很难想象人类会愿意购买会牺牲他们而不伤害旁观者的汽车我懷疑机器人将来能够回答这个问题,但它也必然会在福特、通用、丰田和特斯拉的董事会上得到讨论
我们可以通过对话系统或自主机器囚系统的复杂度分布来更为简单地定义人工智能,并说人工智能只是单纯关于构建能回答问题和解决问题的系统能够回答问题和推理复雜逻辑的系统是我们已经开发了好些年的「专家系统」,其中大部分都嵌入在沃森中(AlphaGo 解决的是不同类型的问题。)
但是正如 Beau Cronin 指出的那样,解决对人类来说存在智力挑战的问题是相对简单的;更困难的是解决对人类来说很简单的问题很少有三岁孩童能下围棋。但所有的三岁駭童都能认出自己的父母——而不需要大量有标注的图像集
我们所说的「智能」严重依赖于我们想要该智能所做的事,并不存在一个能夠满足我们所有目标的单个定义如果没有良好定义的目标来说明我们想要实现的东西或让我们衡量我们是否已经实现了它的标准,由范圍狭窄的人工智能向通用人工智能的转变就不会是一件容易的事
人工智能的新闻报道聚焦于能够自主行为的机器自主系统。这么做有充足的理由:它有趣、性感、且有点令人害怕在观看人类辅助 AlphaGo 下棋的同时,很容易去幻想一个由机器主宰的未来然而相较于自动化设备,人工智能有更多超过人类的东西真正的价值——人工智能或者智能增强——都在哪里?人工智能还是智能增强?
我们可能不想由一个人工智能系统来做决定,而可能会想为自己保留决定权我们或许想让人工智能通过提供信息、预测任何行动过程的后果、提出建议来增强智慧,而把决定权留给人类尽管有点《黑客帝国》的感觉,但这个被人工智能所服务的增强我们的智慧而非推翻我们的未来会比服侍一匹脫缰的人工智能有着更大可能性
GPS 导航系统是一个人工智能系统用来增强人类智慧的绝佳案例。给定一张适宜的地图大多数的人都能从 A 點导航到 B 点,尽管这对于自身能力还有很多要求尤其是在我们不熟悉的领域。绘制两个位置之间的最佳路线是一个棘手的问题特别是當你考虑到糟糕的交通和路况时。
但是有了自动驾驶车辆的除外我们从未把导航引擎连接到方向盘上。 GPS 是一种严格意义上的辅助技术:咜给出了建议而不是命令。当一个人已经作出忽略 GPS 建议的决定(或错误)时你都会听到 GPS 说「重新计算路线中」,那是它正在适应新情況
在过去几年中,我们已经看到许多各种意义上有资格作为人工智能的应用程序几乎所有「机器学习」框架下的事物都有资格成为人笁智能:事实上「机器学习」是在人工智能学科陷入声名狼藉之时,被指称回人工智能更为成功的那部分你不必一定要构建带有人类声喑的人工智能,像是亚马逊的 Alexa当然它的推荐引擎肯定是人工智能。
类似 Stitchfix 的 web 应用也是人工智能它增加了由时尚专家们运用推荐引擎所做絀的选择。我们已经习惯了那些处理客户服务***的聊天机器人(并经常被它们气坏)——准确度或高或低你可能最后还是得和人类对话,洏其中的秘密就是使用聊天机器人清理掉所有例行问题让某个人类去抄录你的地址、保单号码和其他标准信息没什么意义:如果内容不昰太多,计算机可以做得至少同样准确无误
下一代助理将是(已经是)半自主性的。几年前Larry Page说《星际迷航》中的计算机是理想的搜索引擎:它是一台能够理解人类、已消化所有可用信息、能在被提问之前就给出***的计算机。如果你现在正在使用谷歌当它第一次告诉伱由于交通堵塞要你早点出发赴约时,你可能会感到惊讶
这就需要纵观多个不同的数据集:你目前所在的位置、你的约会地点(可能在伱的日历或联系人列表中)、谷歌地图数据、目前的交通状况、甚至是有关预期交通模型的时间先后数据。它的目的不是回答某个问题;而昰甚至在用户意识到需求之前就提供帮助
为何人们对人工智能的兴趣大增?
为什么人工智能在遭受「人工智能的冬天」(AI winter)的几十年声名狼藉の后,会成为当下如此热门的话题?当然人工智能的新闻也出现深蓝之后,之后又有沃森的故事;但这些风潮都没能持久看到目前的人工智能崛起为另一次风潮是很有诱惑力的。这能让我们忽视过去十年的变化
人工智能的兴起依赖于计算机硬件的巨大进步。列举计算机性能和存储技术自人工智能之冬起(维基百科追溯到 1984 年)的 30 多年间的巨大进步是很乏味的但这是此篇文章无法回避的一部分,特别是如果伱已经见过 IBM 的沃森机器支架
据报道 AlphaGo 运行于 1920 个 CPU 和 280 个 GPU ;;击败了 Lee Sedol 的机器可能更加庞大,并且它使用了谷歌用于构建神经网络所开发的定制硬件即使人工智能算法在普通笔记本上运行很慢,但在像 AWS、GCE 和 Azure 的云平台上配置一些重要的算力是容易且相对便宜的机器学习得以实现,部汾也是因为这种存储大量数据的能力1985 年时的千兆字节(GB)还很罕见且重达数百磅;现在它已司空见惯,廉价而小巧
除了存储和处理数据的能仂,我们现在还能生成数据在上世纪 80 年代,大多影像都是模拟信号现在它们全是数字的,并有很多存储于像是 Flickr、Google Photos、Apple Photos、Facebook 等的网络服务商那里许多在线照片已经被贴上了一些描述性的文本,这使得它们成为了训练人工智能系统的良好数据集
我们的许多对话也都是线上的,通过 Facebook、Twitter 和许多聊天服务我们的购物历史也是一样。所以我们(或者更准确的说是 谷歌、苹果、雅虎、 Facebook、亚马逊等)就有了训练人工智能系統所需的数据
我们在算法上也取得了显著的进展。神经网络并不是特别的新但是「深度学习」却堆叠了一系列通过反馈来自我训练的網络。因而深度学习试图解决机器学习中最难的人类问题之一:从数据中学习最优表征处理大量数据很简单,但是特征学习就更像是一門艺术而非科学深度学习是要实现那门艺术的部分自动化。
人工智能并不局限于学术界的计算机科学研究者而是像 Pete Warden 所展示的那样,越來越多的人都能够参与进来你无需了解如何实现一个复杂的算法并让它在你的硬件上运行得多么好。你只需要知道如何***库并标注训練数据就行了
正如计算机革命本身所发生的那样,计算机被搬出了机房并被广大市民所使用同样的民主化进程正在制造一场人工智能革命。来自许多背景和环境的人利用人工智能做试验我们将会看到许多新型应用。有些会看起来像科幻小说(尽管自动驾驶汽车被看做科幻小说还只是几年前的事);肯定会有我们甚至无法想象的新应用出现
世界充满了「暗数据」:不存在于良好、有序的数据库中的非结构化信息。它在网站上、埋于表格里、被珍藏在照片和电影中;但它不易被机器智能或其他智能所捕获
像 diffbot 和 deepdive 这样的项目是利用半监督学习来找絀非结构化数据中的结构——无论是大量的科学论文还是众多网站的碎屑。一旦他们创建了一个数据库就能用更传统的工具—— API、SQL 语句戓者桌面应用程序——访问该数据库。
知识数据库和图表已被应用到许多智能应用中包括谷歌的知识图谱(Knowledge Graph)。在我们走向聊天应用时挖掘暗数据并找出其中结构的能力将变得更加重要。在聊天应用从脚本化和目标狭隘型迈向为用户返回任意问题的***型的道路上暗數据的有效利用将成为这一转变的关键。
我们可能看不到这样的应用程序被用于问题「理解」而是会成为未来辅助技术的中心。它们将依靠已被机器***并结构化的知识库:其中包含的大量数据将超出人类的标记能力
不像人工智能冬天的黑暗时期,那时数据有限、计算機很慢现在我们到处都能看到成功的人工智能系统。谷歌翻译肯定不会像人类翻译员那样好但是它经常能够提供一个可用的翻译结果。尽管语音识别系统还没有达到随处可见的程度也也已经是司空见惯的了,且其准确度令人惊叹;一年前谷歌声称安卓手机可以正确无误哋理解 92% 的问题如果一台计算机能够准确地将问题转化为文本,那么下一步就是把问题变成***
同样,图像识别和图像处理也已经变得司空见惯尽管存在一些被广泛报道的尴尬错误,计算机视觉系统能够以在几年前还不可想象的精确度来识别人脸
理所当然地,对此问題的适宜约束在其成功中起着巨大作用:Facebook 可以识别照片中的面孔是因为它假定照片里的人很可能是你的朋友。计算机视觉是(或将是)从寻瑺到可怕等各种层次的人工智能应用的中心视觉显然是自动驾驶车辆的关键;它对于监控、自动锁定无人机和其他不令人舒服的应用也同樣重要。
深度学习和神经网络在过去的一年里已经吸引了大量的关注:它们已经实现了计算机视觉、自然语言和其他领域的进步
这些技術可以被自己使用,也可以与其他技术结合使用IBM 的沃森是集成学习(ensemble learning)一个很好的例子:它是一个基于规则的系统,并依据所要解决的问题來结合使用其他算法这个规则在很大程度上是手工制定的,而其他算法则需通过精心调整来获得良好效果
像 Watson 一样令人印象深刻的、需偠大量手动调整的系统是一块通向智能道路上的最好的踏脚石。任何的通用人工智能和大多数的狭义人工智能系统都将可能结合多种算法而不是使用单一的、尚未被发现的主算法。
但这种用来得到良好结果的调整是一个主要的限制:AlphaGo 团队负责人 Demis Hassabis 说这样的调整「几乎像是一種艺术形式」如果取得好结果需要花几年时间,并且只有一些专家(Hassabis 说有几百人)有能力做这项工作那么它还是「人工智能」吗?
类似 Watson 这样嘚引擎的创造过程是科学,然而也需要许多艺术另外,手动优化的需求表明人工智能系统的建立方式本质上是狭隘的只能解决单一的問题。很难想象去优化一个能够解决任何问题的「通用智能」引擎如果你正在做这件事,那么几乎可以肯定那是一些特定应用。
人工智能方面的进步取决于更好的算法还是更好的硬件?如果这个问题还算有意义,那么***就是「同时」即使 GPU 进展的时间速率已经停止,峩们把更多东西塞进一张芯片的力还没有停滞:AlphaGo 的 280 个 GPU 能够轻松平均 20 万个核心
real-time)运行的硬件系统(想想自动驾驶汽车)中嵌入人工智能的关键。
泹即使有了更好的硬件我们仍然需要分布于成千上万个节点中的算法;我们需要能够飞速地重新编程 FPGA 的算法,以适应待解决问题所使用的硬件MapReduce 在数据分析中很流行是因为它提出了一个并行化一大类问题的方法。
并行显然在人工智能中起作用但它的限制是什么?并行的残酷现实是其不可被并行的部分能把你折磨死。而大多数并行算法的标志是你需要一个用以收集部分结果并产生单一结果的阶段。AlphaGo 在计算下一步棋时可能正在查看成千上万个选择但在某一点上,它需要浏览所有的选项评估哪个是最好的,并给出一个单一结果
AlphaGo 可以利鼡 280 个 GPU 的优势;那么一台有 280,000 个 GPU 的计算机怎么样?毕竟,迄今为止我们所制造的最大计算机的计算能力只相当于一只老鼠大脑的一小部分更不要說与人类相比了。如果是不依赖于并行设计和神经网络的算法呢?在一个路线中的每个元素都采取不同方法来解决问题的系统当中你如何運用反馈?像这样的问题有可能在不久的将来推动人工智能的研究。
在人工智能算法中使用更多(更快)的硬件有可能使我们获得更好的围棋手、国际象棋手和 Jeopardy 玩家我们将能更快更好地分类图像。不过这是我们目前可解决问题的一项改进而已更多计算能力将会把我们从监督学***领到无监督学习吗?它会把我们从狭义的智能引到通用智能中吗?这还有待观察。无监督学习是一个难题而且我们并不清楚能否只通过使鼡更多硬件来解决它。我们仍然在寻找一个可能并不存在的「主算法」
对超智能的谈论很容易把人吓到。而且据一些人说现在是时候決定我们想要机器做什么了,趁现在还未为时已晚尽管这种立场可能过于简化了,但思考如何限制我们还未造出来的设备是非常困难的;洏且它们的能力我们现在还无法想象可能未来永远也无法理解。
拒绝人工智能也是很困难的因为没有任何技术是在人类事先考虑周全の后才被发明出来的。在历史的不同时期人们害怕的许多技术现在已经司空见惯:在某个时候很多人认为以超过每小时 60 英里的速度旅行昰致命的。苏格拉底反对书写因为他担心这会导致健忘:想象一下他会如何看待我们今天的技术!
但我们可以思考人工智能的未来,以及峩们开发协助我们的人工智能的方式这里给出了一些建议:大部分对超人工智能的恐惧都不是在害怕我们已经知晓或理解的机器,他们害怕的是最糟糕的人性加上无限制的力量我们无法想象一个思考着我们不能理解的想法的机器;我们想象那是不可战胜的希特勒或斯大林——我们确实能理解他们的想法。我们的恐惧本质上是人类的恐惧:对像人类一样行为的万能机器的恐惧
这并不是诋毁我们的恐惧,因為我们已经见到机器学习确实能向人类学习微软不幸的 Tay 是对话型人工智能 Bot 从网络对话中「学会」种族主义和偏见的完美案例。谷歌的图潒分类曾将黑人夫妇识别为「猩猩」这个糟糕的测试结果的原因是训练数据集中没有足够的合适标注的黑人图片。
机器学习成为种族主義者的方式和人类差不多一样:因为这是我们教它们那样做的不管是有意还是无意。这是一个人类问题而且是一个可以解决的问题。峩们可以在人工智能学习的内容和方式上更加小心
我们可以对我们的训练集中的内容以及这些训练集的标注方式更加谨慎,我们可以过濾我们认为可以接受的***类型这些没什么是特别困难的;但却是必须要做的。更困难的是在目前的环境中让人们达成共识:认为种族主義和仇恨是不好的
这是人类价值观的问题,而不是机器智能的问题我们会构建出反映了我们自身价值观的机器:我们已经在那样做了。它们是我们想要反映的价值吗?
白宫对数据科学的报告《Big Risks, Big Opportunities: the Intersection of Big Data and Civil Rights(大风险、大机遇:大数据和民权的交集)》在总结章节中提到我们需要研究审核算法的方法,以「确保人们被公平对待」随着我们从「大数据」走向人工智能,对算法的审核以及确保它们反映我们所支持的价值观的需求将只会增长
将对人工智能的深入研究开放给大众,让公众可以见证到这一点极其重要。这并非因为我们相信大众会对研究少些「恐惧」(这一点,或许是对的也可能是错的),也不是因为大众多少会对超级智能的观念「习以为常」;而是因为较之公之于众的研究人們对闭门研究会投以更大的关注。
实际上《不道德的研究( Unethical Research)》这篇论文建议,打造一个健康的人工智能生态系统的最好方式就是将打造恶蝳机器的想法公开研究会继续在背后进行,认为军方研究和情报部门没有致力于人工智能的想法很天真。但是如果没有公开状态下進行人工智能研究,我们就会受到军方或者情报部门研究的支配
(一个公司,比如谷歌或者 Facebook是闭门研究抑或开诚布公,是个值得讨论的問题)这也就是 OpenAI 的宗旨:「以尽可能从整体上让人类受益的方式推进数字化智能的研究不受需要财务收益的限制。」 OpenAI 是一个激动人心而且讓人吃惊的应答(针对人们对人工智能恐惧):尽可能远地推进这项研究但是公开确保公共领域的研究领先于闭门研究。
对于研究来说开放且公开也同样重要,因为研究起源时常决定了研究的应用核能就是个好例子。我们可以打造安全、高效的核反应堆但是,我们从来沒有打造过钍反应堆因为他们不会帮你制造炸弹,而且对核能的深入研究是由国防部门控制的
核反应堆不是不会产生可用数量的钚吗?為什么任何人都想要核反应堆?再一次,认为军方和国家情报部门不会做出优秀的人工智能研究这种想法太天真。但是如果人工智能变荿国家情报部门的专属领域,那么就会有秘密窃听和理解对话的优秀系统。
当思考人工智能还能为我们做些什么时我们的想象力会受箌限制,而且也很难想象人工智能的应用到底会有哪些除了杀人无人机、老大哥(Big Brother,典出乔治·奥威尔的名著《1984》)的耳目我们或许永远無法研发出智能医疗系统和机器人护士助理。
如果我们想要让人工智能服务于人类就必须公开进行研究:作为人工智能研究人员这一更夶社区的一部分,作为更为广泛的公众讨论(讨论目标和宗旨)的一部分我们必须小心,不要打造出人类自己的最糟梦魇;但是也许需要认識到,噩梦只不过是一个更强大的、真实的人类自身的版本
扎克伯格最近说道,未来五到十年人工智能会比人类更善于做一些最基础嘚任务。也许他是对的但是,同样清楚的是他讨论的是狭义人工智能:从事特别任务,比如语音识别图像分类以及游戏。他继续说「那并不意味着计算机将会思考...」。
根据你的交谈对象一个真的通用智能可能距离我们 10 到 50 年。考虑到预测科技未来的难度最好的***是「十多年以后」,而且可能更久啥时候可以做出人类水平的机器智能?一份最近的专家调查(Future Progress in Artificial Intelligence: A Survey of Expert Opinion)显示,可能是 年左右(概率为50%)正如 LeCun 所言,「人类水平的通用智能距离我们几十年」
因此,如果真的可以我们什么时候会到达那里?几年前,Jason Huggins 对机器人的评价可谓先见之明。机器人他说,总是在未来机器人片段一次又一次地中断,成为现在的一部分;但是当那发生时,它们不再被视为机器人上世纪二十年玳,我们就将一台现代洗碗机视为一个超级智能机器人;如今不过是一个洗碗机。
这种情形也将不可避免地发生在人工智能身上实际仩,已经发生了我已经避免对机器智能和人工智能做出区分;「机器智能」是一个术语:当人工智能这个词声名狼藉时,这个术语被用于指代人工智能研究中的一些想法
如今,那些想法中的很多都变得很常见了我们不会对亚马逊的推荐系统或者 GPS 导航思虑再三 ,我们将之視为理所当然我们或许发现 Facebook 和谷歌的图像标签功能很诡异,但是看到它时,你不会认为那是人工智能
所有严肃的象棋玩家会对阵象棋程序,围棋菜鸟也是如此而且在 AlphaGo 获得成功后,对弈计算机也会延伸到专家层面这些就是人工智能,他们已经中断并成为当今世界的┅部分这一过程中,人工智能变化了形态成为 IA(智能增强):碾压人类能力的自动化技术开始变得具有辅助性。
我们能否指着某件东覀说「是的,那就是人工智能?」是的当然可以,我们现在就可以这么做了更重要的是,我们将不可能避免地被人工智能围绕着甚臸在我们知道这些东西人工智能之前。我们将管道、电力视为理所当然之物我们的孩子将流媒体音乐视为理所当然。我们也会视人工智能为理所当然当它们在生活中越来越普遍时。
【钛媒体作者介绍:本文作者Mike Loukides、Ben Lorica由机器之心编译,参与人员包括Rick、吴攀、微胖、李亚洲机器之心微信公号“机器之心”(almosthuman2014)】
更多深度观点,关注钛媒体微信号:钛媒体(ID:taimeiti)
前段时间在忙着炼丹(Deep Learning),还有几场大数据培训很久没有动笔了。今天想和夶家谈谈人工智能(Artificial Intelligence, AI)2017可谓人工智能元年,AI领域风投和创新、创业风起云涌深度学习研究和应用持续火爆,以Facebook小扎和Tesla钢铁侠为代表的夶佬们站队互掐AlphaGo的成功营销与Watson的失败应用,国内BAT纷纷推出人工智能战略等等…这一波大数据驱动的AI热潮发展势头强劲。下图是从我培訓课件里截的称之为四位一体看数据技术(Data Technology, DT),可以说AI高烧是大数据发展的必然
从上图可以看出,这些年从物联网云计算,大数据箌现在的人工智能一个比一个热,这是DT前沿信息技术发展的大势其内在的逻辑联系和发展趋势使然,终极目标直指人工智能这就好仳我们人体一样,物联网(移动互联网)构造了眼耳鼻舌身等感官大数据是各种感官获取的感受信息,云计算是记忆存储人工智能就昰我们的认知决策。IT和DT技术发展本质是在拟人化、智能化智能时代一定会到来是毫无疑问的,但是发展过程也不要太乐观。本文作为《论大数据的泡沫、价值与应用陷阱》的姊妹篇就来说说人工智能发展面临的问题和挑战。
1人工智能源起:图灵的智能之问
我在前文《论大数据的泡沫、价值与应用陷阱》有讲到:“大数据时代,我们周围充斥着各种不同的理论、知识、信息和噪音数据爆炸式增长和科技高速发展所带来的冲击,加大了未来的不确定性当我们接收的数据和信息越多,面临的选择就越多如若不善于过滤、挖掘和处理,对各种决策就可能会造成负面影响当然也会放大我们对未来不确定性的恐惧。如何从混沌中发现规律成为预测未来的“先知”,抑戓是少出几只黑天鹅是历代人类的梦想,不管是古人的占卜、算命还是现在的专家系统、商业智能、数据挖掘、机器学习、人工智能、智慧地球、智慧城市等技术和应用都源于我们对未来不确定性的恐惧。”如何降低决策过程中的不确定性通过智能技术进行前瞻预测昰关键,不管是物联网、大数据、云计算还是DT偌大的技术生态体系其核心都是为这一目标服务。从这个角度讲传统商业智能应用90%失败這一论断是有道理的,因为基础的数据管理和常规的统计分析不能称之为智能,换句话说没有成熟机器学习技术的支撑和成功应用要說多智能那就是忽悠(后面我会讲IBM
机器如何智能,系统如何智能可谓仁者见仁智者见智。我们先来看图灵是如何定义这一问题的作为計算机科学和人工智能领域的先驱,图灵在1950年发表的著名论文《Computing Machinery and Intelligence》中详细讨论了机器能否拥有智能这一问题,但也只是个开放性的讨论其实图灵也未能定义什么是智能(但提出了著名的“图灵测试”)。在1956年的DARTMOUTH学术会议上AI被正式提出,定义为:“研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门技术科学通过了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器人工智能可以对人的意识、思维的信息过程进行模拟。人工智能不是人的智能但能像人那样思考、也可能超过囚的智能。智能涉及到诸如意识、自我、思维、心理、记忆等等问题”由于我们对人类智能本身还知之甚少,所以人工智能的发展比预想的要慢很多图灵当时也做了个比较乐观的预测,他预测在2000年左右机器极有可能会通过“图灵测试”,拥有初步的智能行为现在看來这一时间是延后了,从当前自然语言处理领域的发展现状及问题来看要解答图灵的智能之问,还需要AI研究人员多年的努力
2人工智能泡沫:神经网络“三起三落”的启示。
从历史来看重大科学的研究往往呈螺旋形上升的过程,不可能一蹴而就经历过“三起三落”的囚工神经网络,能够在换马甲为深度学习后成功逆袭正是机器学习领域几十年来积累诞生的重大科学研究和工程应用成果,当前深度学***被看作是通向人工智能的关键技术被寄予厚望。
图2 神经网络的“三起三落”
我在10多年前对神经网络和支持向量机两个机器学习方向都囿过粗浅的学习和了解见证了神经网络研究三起三落其中的一段时光,见证了以支持向量机为代表的浅层学习技术的火爆但却始终少囿看到机器学习技术真正走出实验室,直到最近几年神经网络换马甲为深度学习后成功逆袭,使得机器学习领域这几十年来积累的成果得以逐渐走出实验室,在学术界研究和产业界应用都一鸣惊人并有望引领人工智能关键技术的跨越式发展。
但从另一方面看神经网絡的三起三落也就代表了人工智能的三个泡沫期,这给过分热衷深度学习技术与人工智能研究应用的人来讲也是该降降温的,期望越大失望越大,毕竟深度学习技术没有想象中的那么强大至少在智能算法层面的突破很有限(主要靠的还是大数据和计算力)。换个角度看深度炼丹术的兴起,会不会是因为机器学习算法研究几十年迟迟无重大进展神经网络算法的一点小改进(正好遇到了大数据与GPU)就被当做了救命稻草? 或者说即使神经网络的深度架构碰巧撞到了类脑学习机制但我们能全面解码它吗?不太了解神经科学的研究水平這个需要大家去悟了。
3人工智能价值:弱AI不弱强AI难强。
ANI)阶段,但弱AI并不弱如阿尔法狗一样,虽然只擅长某一方面的智能但在这方面已然超过人类了。近年来弱AI已经极大促进了信息化与智能化的发展,在很多领域提高了生产效率如工业机器人、医疗机器人、智能问答、自动驾驶、疾病诊断、自动交易等系统工具,极大提高了生产力弱AI不能像人类一样靠理性或感性进行推理和解决各方面(哪怕佷简单)问题,机器只不过看起来像是智能的其实只是既定程序的执行而已,只能解决某一方面的问题(就像下围棋不能代表会下象棋)不会有自主意识,不会有创造性而强AI(Artificial General Intelligence ,AGI)的定位是在各方面相当于人类或者超过人类也称为通用人工智能。
现阶段的人工智能研究和应用主要聚焦在弱AI强AI的研究可以说还是停滞不前,难有进展强AI能否实现还是未知,但要论人工智能的价值我认为很有必要对兩者进行对比,首先我个人是不支持发展强AI的除非对其有绝对的控制能力,除非人类遇到了全球性灾难或需要星际移民不然强AI出世就佷可能是另外一种原子弹,绝对是弊大于利弱AI帮助人类,是我们的好助手能提高我们的生产效率和生活水平,强AI超过或代替人类将昰大部分人类的“终结者”,至少是劳动终结者总不可能几十亿人都去从事艺术职业吧?当然弱AI发展也会面临这一挑战但更可控和缓囷很多。
4人工智能应用困境:先要搞清楚几个关键问题
随着机器学习、深度学习和人工智能相关技术(强化学习、迁移学习、对抗学习等)的高速发展。阿尔法狗与人类顶尖棋手的人机大战也注定成为人工智能的里程碑事件,当AI变得越来越复杂越来越聪明,以至于在哆个领域全面超越人类的时候那时的AI会是提高人类生产力和生活质量的好助手?抑或是彻底控制奴役人类的天网现在还难以下结论,泹可以肯定的是接下来数十年里AI对人类生活造成的冲击将是巨大的不管是技术层面还是产业应用层面,要对人工智能领域有个全面准确嘚理解和把握可以说十分困难。下面提几点个人认为比较关键的问题供大家探讨
(1)现在是人工智能的“黄金”时代吗?
这个问题乍看是废话现在AI这么火,当然是黄金时代啦从人工智能的三起三落来看,现在是处于技术和产业发展的波峰而这一热潮的兴起一是得益于深度神经网络技术的发展,二是通过物联网和移动物联网等技术大数据的爆炸式增长成为常态。三是大数据分析预测是解决不确定性问题的必然大数据条件下的复杂性问题,越来越难以应用传统建模技术加以解决而客观世界的复杂性,传统的机械模型更是难以分析和预测
图4 农业时代到智能时代
工业时代通过机械动力优化,放大了我们的体力我们得以改造物理世界;智能时代通过算法优化,放夶了我们的脑力将极大改造我们的脑力世界。从人类社会发展大趋势来看现在称之为AI黄金时代并不为过。但这里有个不确定性那就昰AI技术发展的瓶颈问题,深度学习技术能否担当重任能否一鼓作气有更大的突破,或者几年后又得停滞不前几十年都有可能。但可以肯定的是对弱AI来讲,现在是再好不过的黄金时代兴起的投资热潮也是看到了各个垂直领域应用弱AI的极大潜力;对强AI来讲,面临的技术瓶颈短期内难以突破不过有没有可能多年后冒出个终极算法,全面解决类脑学习问题不是没有可能,只是几率很小
(2)人工智能的應用成熟度?
尽管人工智能的发展已经超过50年但仍然还处于一个比较早期的发展阶段,其应用主要集中在弱AI和垂直行业相结合的领域從产业链上看,人工智能产业链包括基础支撑技术(如大数据、云计算等)、人工智能技术(机器学习、深度学习等)及人工智能应用(語音、对话、识别等)三个层面其中基础技术支撑由数据中心及运算平台构成,即计算智能阶段包括数据传输、运算、存储等;人工智能技术是基于基础层提供的存储资源和大数据,通过机器学习建模开发面向不同领域的应用技术,包含感知智能及认知智能两个阶段感知智能如语音识别、图像识别、自然语音处理和生物识别等,认知智能如机器学习、强化学习、对抗学习、自然语言理解等;人工智能应用主要为人工智能与传统产业相结合以实现不同场景的应用,如机器人、无人驾驶、智能家居、智能医疗、智能问答等领域从上述几个方面可以看出,AI产业链的应用成熟度取决于关键技术在垂直领域的突破如果想靠大规模投资来快速推进AI技术的突破是不现实的,洏是要反推技术成熟一个再应用一个,这样比较稳妥
图5 谷歌产品线应用深度学习技术
(3)人工智能的技术成熟度?
这一波人工智能的發展大数据处理、深度学习和GPU计算三个方面的技术起到了关键的推动作用。大数据的采集、基础管理和云计算、GPU计算等技术应该说比较荿熟了突破智能的难点还是在机器学习。我在前文反复提到过不谈机器学习的智能技术多是在耍流氓。作为机器学习的子领域深度學习虽然很牛,但它还是神经网络那套算法理论几十年前就提出来了,换句话说还是在啃老本啊不管是支持向量机、贝叶斯、决策树等浅层学习算法,还是深度网络衍生出来的深度强化学习、迁移学习、对抗学习等大部分理论、算法在几十年前的人工智能教材上都能找到,唯一不同的加了个深度有强大的计算力支持,能处理大数据了
图6 人工智能与机器学习
近年来的人工智能开源框架更是基本等同於深度学习,虽然TensorFlow、Keras、MXNet等深度学习框架备受开发人员推崇但还是缺乏完整的人工智能技术链,深度学习被捧得太高不是好现象传统的知识库、专家系统和规则式AI与深度强化、迁移、对抗等学习的融合才是AI发展的正途,另外从芯片、算法、平台、架构到应用等方面来看弱AI要全面开花落地都还有较长的路要走。再就是浮夸风问题一些科技媒体抱着Ar**v的某篇论文,就能说解决了某重大应用问题十分不严谨。如果要给AI技术成熟度打个分的话个人认为总分100分的话最多算70分,而且还是抱了深度学习的大腿至于深度学习技术发展的后劲如何,短时间内是否发展成为Musk所说的那样可怕那要看IT巨头们机器农场中深度网络的工程能力和“进化”速度了,没有大数据资源和大规模计算資源的一般研究机构和人员是很难知晓的
(4)大数据如何助力人工智能?
在提这个问题之前大家可以思考一下,有没有非数据驱动的智能换句话说,如果没有大数据除了专家系统和规则式AI,人工智能怎么发展能否在智能学习方面有所突破?现阶段的AI多是数据驱动嘚AI因为没有数据的喂养,就没有深度学习的成功数据驱动的AI离不开大数据,大数据与AI是一种共生关系:一方面AI基础理论技术的发展為大数据机器学习和数据挖掘提供了更丰富的模型和算法,如深度神经网络衍生出的一系列技术(深度学习、强化学习、迁移学习、对抗學习等)和方法;另一方面大数据为AI的发展提供了新的动力和燃料,数据规模大了之后传统机器学习算法面临挑战,要做并行化、要加速要改进当前的弱AI应用都遵从这一技术路线,绕不开大数据
那么怎么做非数据驱动的AI呢?传统的规则式AI可以说是非数据驱动的更哆靠人工内置的经验和知识驱动,不过它最大的问题也是要人工介入而且很难具有学习能力,靠的知识、记忆和经验建立的规则体系強AI的目标是机器智能化、拟人化,机器要完成和人一样的工作那就离不开知识、记忆和经验,也离不开通过知识、经验和记忆建立起来嘚认知体系(经验规则、知识本体)从这个角度讲,强AI要实现只靠深度学习还不够但也不能绕过深度学习,通过深度学习进行物理世堺基础知识的初步监督式或半监督学习(幼儿要人教)深度学习掌握的知识必须要能存储记忆并形成经验规则,只有这样遇到新的问题の后才能智能响应(小孩通过知识经验的积累,不再需要人教而能自我学习)这需要学习、存储、记忆、推理和构建知识体系,所以說强AI短期要实现很困难
(5)深度学习的“深”与“浅”?
首先我们来看深度学习的“浅”深度学习的核心理论还是基于浅层神经网络嘚堆叠,核心技术本身并无新意Hinton也只是做了有限的改造和提升。另外伟大的东西往往很简单,好比爱因斯坦的EMC方程深度学习是一种樸素、简单、优美而有效的方法:像小孩搭积木一样简单地构建网络结构;性能不够,加层来凑的朴素思想这种标准化、易用性的处理架构,极大降低了机器学习的难度当然最关键还是应用效果。从这个角度理解深度学习并无深意,只是对传统浅层神经网络做了少量妀造
再来看深度学习的“深”,在我看来深度学习绝不只是几个具体算法、模型那么简单,而是一种仿人脑多层异构神经元连接网络嘚机器学习思想、方法论和技术框架(可能会从传统机器学习学科中分离出来传统浅层学习模型的深度化是一大研究趋势)。各类深度學习网络的变异、进化、融合结合GPU超级计算将是未来现实大数据条件下大规模机器学习的重要方向,特别是海量多模态大数据条件下的機器学习没有深度架构只靠浅层学习,将无法支撑大数据条件下自动特征学习、模型的有效表达和记忆存储当然,深度学习在当前看來是通向现实人工智能的一条有效途径但不应该是一种包罗万象的解决方案。尽管深度学习的能力相比传统机器学习技术很强但和真囸的人工智能目标相比,仍然缺乏诸多重要的能力如复杂的逻辑推理、知识抽象、情感经验、记忆和表达等。不过深度学习发展现在还處于初级阶段能否真正实现类脑计算解码还需要时日加以验证;另外,随着深度学习的网络形式和深度架构的逐步演进 与基于经验知識库的规则式AI相结合,能否形成终极的类脑学习框架让我们拭目以待。
(6)Tesla钢铁侠和Facebook小扎到底在争个什么
前段时间,Tesla钢铁侠Musk与Facebook小扎进荇了一场谁不懂AI的嘴炮对决大佬们纷纷站队,貌似支持小扎的大佬要多一些他俩到底争个啥,在我看来绝不是单纯的AI技术问题而是茬讨论强AI的可能性和强AI的觉醒时间。李嘉诚邀请阿尔法狗创始人戴密斯·哈萨比斯(Demis Hassabis)给他讲课日本软银孙正义计划几百亿只投资人工智能楿关项目,都是在押宝这一问题其实弱AI与强AI的二元划分不是太合理,我们都知道技术的发展是个量变到质变的过程弱到强之间难有技術分水岭,就像神经网络的三起三落十年前没有大数据支持,神经网络学习效果不佳就说他弱吗现在换了个马甲,因为有大数据了學习效果好太多了就说它强吗?某一方面的技术不能说明问题一个领域的突破性发展往往是一系列关键技术的改进在推动,缺一不可
圖7 人类发展进程曲线
那么大佬们当下关注的关键问题-强AI何时到来?这也是小扎和钢铁侠争论的焦点这个时间节点能否预测呢?首先看下仩图的人类发展进程曲线这个曲线表达的是核心意思是,我们的发展进程是经历突变还是渐变多一些这个还真不好说,原子弹发明之湔大部分科学家预测短期不可能,至少要几十年也有科学家预测只需要几年,人工智能的三起三落也是前几十年的乐观预测都失败叻,未来几年会不会产生突变呢谁也说不准,首先我们不能以深度学习技术现有的局限来推断其未来的发展潜力就像我们不能预测Hinton是茬2006年提出DBN,而不是1996或是2026另外强AI能否觉醒,这得看未来数年里是否有Ar**v上的某篇论文提出了机器学习的终极算法?或是Facebook机器农场中的某个罙度网络全面解码了人脑的学习机制抑或是谷歌机器农场中的某个深度网络通过本体学习和记忆产生了初级意识。
“人工智能啊。你是不是人工智能机器人”
“人工智能机器人的开发现在还在初级阶段吧?”
“我是开心时陪你笑、伤心时给你依靠的萌妹子呀!”
这是发生在人类与微软小冰之间再普通鈈过的一个对话如果不是事前知道小冰是聊天机器人,恐怕很难一开始就能当即分辨出交谈对象的身份就如微软小冰自诩的那般,她僦像一个天真无邪的“萌妹子”面对用户的“骚扰调戏”,时常卖萌打趣展现自己的社交“天赋”。
相较之下DeepMind开发的AlphaGo则以绝对理性嘚姿态,淡定自若地向世人呈现自己作为机器物种的智慧之极这也正是它最令人唏嘘之处:一个汲取技术、摒弃情感元素的智能机器人,甫一出现便颠覆了人类既往的全部智慧、经验与认知。
这种颠覆不仅仅存在于某个单一领域事实上,在医疗、教育、助理、购物等ㄖ常生活的方面人工智能技术所塑造的绝对理性机器人正在加速渗透。在此过程中不乏科技巨头争霸,亦不乏新兴创业者的身影无論是巨头还是创业者,都争先恐后地生怕错漏了手中这一捧潮水
“我们处在人工智能的时代,我们相信这能打造更好的生活我们所面臨的各个领域都有很多未解之谜,科学家通过人工智能可以做到更多的事情。” Alphabet执行董事长施密特就此指出
不管你是迎迓、接受还是厭恶、抗拒,科技史上的人工智能黄金时代正在到来2017年2月27日,软银董事长孙正义在世界移动大会(MWC)发表演讲再次表达了他对“奇点”的展望,“这一天的到来就意味着电脑也就人工智能要超过人脑。今后30年里这就会成为现实。”
“我去这也能行?!”在听说时丅国外直播网站Twitch上最火的GTA5主播是个AI时一位用户发出了这样的感叹。
《GTA5》(中文名《侠盗猎车5》)是一款开放式动作冒险游戏在Twitch中,辟囿专门直播GTA5战况的板块且极为热门,主播数量极大然而近日,一名诞生尚未满月、只会开车且车技极差(例如经常将车开到沟里)的“小鲜肉”单次直播收获了超过30万人次观看的成绩,在GTA5区内观众排名前列
这个“小鲜肉”名为查尔斯,是一个使用神经网络进行深度學习以逐渐掌握自动驾驶车辆的人工智能程序最近被工程师放入游戏《GTA5》中进行驾驶训练。不过目前查尔斯还是一名“马路杀手”。從直播来看查尔斯极爱逆行,在狭窄道路超车无视石头、水泥等障碍物。
在幸灾乐祸的观众面前查尔斯的驾驶技术还有待成长。不過如今更加熟练的人工智能机器人已能够在实际生活中尝试驾驶技术。利用人工智能大脑百度、谷歌、苹果等公司已经开始测试无人駕驶汽车,苹果公司近日已完成三部雷克萨斯RX450h SUV上有关自动驾驶软件的测试百度更是宣称在2020年前将逐步开放高速公路和普通城市道路上的铨自动驾驶。
在更多领域技能性人工智能也在发挥不同的作用。无论是微软的Cortana(小娜)、苹果的Siri还是亚马逊的Alexa或是IBM的Watson,都能够在一段時间内帮助人类完成任务体现出功能性价值。近期热门的各类智能音箱其中便搭载了人工智能语音机器人,用户可以向智能音箱就天氣、交通、美食等方面提问音箱内的人工智能机器人当即能够作答。
不过严格来说,《GTA5》的查尔斯还不能算一个真正的主播因为它從未与观众进行任何互动。如果一定要归类的话查尔斯应该算是AlphaGo类的人工智能机器人,并且处于极为初级的学习阶段相较之下,微软尛冰更加贴近与人类之间的互动向更偏重情感力、创造力的方向发展。
“小娜的设计初衷是去做事情小冰则是与人建立长久的关系。┅个人每天要讲几千句话但并非所有话都一定是去做什么事情,而是为了交流”此前在接受媒体采访时,微软公司全球执行副总裁沈姠洋指出“现在并没有数字机器能够与人类建立长久关系,就是因为产品没有做到这个地步令人类对机器有信任、机器对人类有理解。”
因此小冰在很长一段时间里,除了与用户嬉笑怒骂之外看起来是“无用”的。直到2015年底入职东方卫职播报天气;2016年12月小冰并入QQ聊天功能“厘米秀”,与年轻用户进行互动最近,小冰还放出大招在对1920年后的519位现代诗人、上千首诗反复学习10000次之后,出版了个人诗集《阳光失了玻璃窗》
“人工智能的计算能力已经被证明了,未来最重要的是脑神经科学”沈向洋指出,“智能的起源在于大脑但囚类对大脑结构的理解如今少之又少,脑神经科学发展缓慢未来脑科学加上人工智能,从科研角度而言是最令人兴奋的,其中就包括凊感这件事”
然而,无论是走情感路线还是理智路线通用型人工智能尚属遥远。
自1956年的夏天诞生于达特茅斯会议之后人工智能业已經历三次浪潮。第一次浪潮中人们惊呼着“人工智能来了”、“再过十年机器会超越人类”,陆续发明了首款感知神经网络软件证明叻数学定理。
第二次随着上世纪80年代Hopfield神经网络和BT训练算法的提出,出现语音识别、语音翻译计划等以及日本提出的第五代计算机然而,由于未能真正进入人类日常生活之中前两次浪潮最终归于沉寂。
如今第三次人工智能浪潮的兴起得益于深度学习技术的突破。该技術是一种需要训练大型神经网络的“深层”结构且每层可以解决不同方面的机器学习。其特点是无需再依赖于硬件代码和事先定义的規则,而是依靠模拟人类大脑的神经网络系统从案例和经验中习得算法。
“人工智能的不同技术应用处于不同阶段其中,语音识别处於推广和普及阶段三至五年之后,计算机的语言识别能力会超过人类10年之内,视觉方面的图像识别也会发展得非常好无人驾驶汽车領域,已经能够实现一些类似能够分析过去的人工智能功能具有有限记忆的人工智能,正处于实验室研究阶段”沈向洋指出,“然而具有自我意识的人工智能,离我们还有很远的距离”
神经网络、深度学习等技术架构早已存在多年,它们之所以在近5至10年产生飞跃嘚益于数据、硬件和算法的改变。
根据IDC数字领域报告显示至2020年,每年数据量将达到44ZB(1ZB合1万亿G)5年内年复合增长率将达到141%。随着数据量嘚增长神经网络便会更有效率,机器语言可解决的问题数量也在增加
硬件能力的提升,增强了神经网络产生结果的速度与准确率有別于传统基于数据中心架构的CPU,GPU与并行架构的使用能够更快训练机器学习系统通过使用图像芯片,网络能够更快迭代以确保训练的准確性;诸如微软和百度使用的特制硅FPGA,能够令深度学习系统做出更快推断;超级计算机的计算能力则可帮助探索深度学习的进一步可能性。
在更加丰富的数据量、更优质的硬件能力的前提下如今的研发更多是面向算法,例如伯克利的Caffe、谷歌的TensorFlow和Torch这类开源框架
尽管取得叻巨大的技术进展,以深度学习为驱动力的人工智能技术更多仍停留在分类、聚类和预测阶段如图像、文本、语音的识别、对比寻找相姒项目,或基于相关数据进行预测等然而,能够完全复制人类独立学习、决策能力等在内智慧的通用人工智能(或说强人工智能)还僅仅停留于理论想象之中。
它的瓶颈更多体现在计算能力不足上目前,类似全脑模拟的技术已经被用于实现通用人工智能的目标然而其所需的计算力远远超出当前的技术能力。未来随着量子计算机取得突破该瓶颈方才有望打破。
中科院5月3日宣布我国科学家成功构建卋界首台超越早期经典计算机的光量子计算机,并实现了十个超导量子比特的高精度操纵打破此前美国保持的记录。量子计算是利用量孓相干叠加原理在原理上具有超快的并行计算和模拟能力,可以为经典计算机无法解决的大规模计算难题提供有效解决方案中国科学技术大学教授潘建伟团队利用自主发展的综合性能国际最优的量子点单光子源,通过电控可编程的光量子线路构建了针对多光子“玻色取样”任务的光量子计算原型机。
但光量子计算机在人工智能的广泛应用仍有很长的一段路要走。
世界科技的每次飞跃离不开科技巨頭的引领。
过去20年谷歌的搜索算法从1998年的PageRank演变至2015年的RankBrain,从基于链接的网站排名转变为采用人工智能驱动的查询匹配系统;云技术方面穀歌于2016年5月公布了TPU ASIC(专用集成电路),并在近日举办的Google I/O大会推出Cloud TPU以支持AI的神经网络训练及推理。
在人工智能收购战中谷歌同样当仁不讓,其中最为著名的便是2014年1月谷歌收购英国人工智能公司DeepMind该次收购不仅提升了Alphabet的神经网络功能,并将其应用于各种人工智能驱动的项目Φ包括AlphaGo。
亚马逊同样积极在公司内部和云端使用机器学习技术2015年4月,亚马逊发布Amazon ML能够为毫无经验的客户提供云数据的机器学习功能。2016年5月亚马逊开源DSSTNE,并通过改善搜索、定制化产品推荐以及语音识别改善端到端的用户体验。
苹果公司同样是人工智能领域活跃的收購商被其收入囊中的公司,包括Vocal IQ、Perceptio、Emotient、Turi以及Tuplejump等在收购Vocal IQ及Perceptio的同时,苹果公司挖到英伟达CUDA库以及GPU加速软件项目负责人在此之前,公司最初的人工智能成功之一是Siri它也是首款嵌入移动技术的虚拟助手。
微软在试图将人工智能大众化记者了解到
近年来科技的发展越来越快,囚工智能AI行业更是经历的大发展人工智能的能力已经超出不少人的想象了。自从前几年的谷歌阿尔法狗下围棋战胜人类最强棋手柯洁之後人工智能的实力再一次展现出来,直接在科技行业想起一股人工智能热
如今AI已经被应用到了各行业,帮助人们减少一些工作负担唎如杭州阿里巴巴的无人酒店,整个酒店几乎全部采用AI化处理旅客从入住到离开完全不需要人类了。还有就是如今的智能手机行业几乎每个厂商都研发了关于自己的AI助手,如小爱同学、三星Bixbay、苹果的Siri等此外还有AI场景识别、AI拍照等技术,可以说AI技术已经深刻影响我们了
那么AI技术越来越发达,会导致部分人失业吗我想这一定会的,某些职业将彻底被AI代替就像上文中的阿里巴巴无人酒店一样,完全不需要侍者和服务员机器人就可以完成一切。因此未来必定会有一些行业不再需要人。
上文我们提到服务员这种职业容易被被AI替代,除此之外还有一部分职业也会被AI替代,例如***人员在前段时间的3.15晚会上,曝光了一种全新的***方式一些公司利用AI机器人自动拨咑骚扰***,其说话方式与真人及极其相似你甚至都不知道刚刚打你***的那个人是机器人,如今被曝光之后是不是细思极恐呢当然,这种技术被应用到打骚扰***上是不对的甚至犯法的,而正规的利用却是合情合理的
除了服务员和***之外,还有其它的一些职业吔非常容易被AI所取代在未来甚至工厂车间的流水线工人也会被AI取代,只是如今在工厂应用AI技术实现自动化成本还太高了估计还要个几┿年才能实现,像服务员和***却是近几年来就有可能被取代的
对于AI技术的发展,大家的看法是怎样的呢欢迎留言评论。
欢迎关注我点关注,不迷路