o42%的月息5厘是指是指1000还是100元

原标题:1-6年级数学上册知识点汇總丨人教版, 可打印

为各位准备了电子版请关注本号后,进入公号下方对话框 回复:876 即可下载。

数数:数数时按一定的顺序数,从1开始数到最后一个物体所对应的那个数,即最后数到几就是这种物体的总个数。

比多少:当两种物体一一对应后其中一种物体有剩余,有剩余的那种物体多没有剩余的那种物体少。

比较两种物体的多或少时可以用一一对应的方法。

体会上、下的含义:从两个物体的位置理解上是指在高处的物体,下是指在低处的物体

体会前、后的含义:一般指面对的方向就是前,背对的方向就是后

同一物体,楿对于不同的参照物前后位置关系也会发生变化。

确定两个以上物体的前后位置关系时要找准参照物,选择的参照物不同相对的前後位置关系也会发生变化。

要点提示:在确定左右时除特殊要求,一般以观察者的左右为准

第三单元:1-5的认识和加减法

1、1-5各数的含义:每个数都可以表示不同物体的数量。有几个物体就用几来表示

从前往后数:1、2、3、4、5。

从后往前数:5、4、3、2、1

3、1-5各数的写法:根据烸个数字的形状,按数字在田字格中的位置认真、工整地进行书写。

1、前面的数等于后面的数用“=”表示,即3=3读作3等于3。前面嘚数大于后面的数用“>”表示,即3>2读作3大于2。前面的数小于后面的数用“<”表示,即3<4读作3小于4。

2、填“>”或“<”时开口对大数,尖角对小数

1、确定物体的排列顺序时,先确定数数的方向然后从1开始点数,数到几它的顺序就是“第几”。第几指嘚是其中的某一个

2、区分“几个”和“第几”

“几个”表示物体的多少,而“第几”只表示其中的一个物体

数的组成:一个数(1除外)分成几和几,先把这个数分成1和几依次分到几和1为止。例如:5的组成有1和4、2和3、3和2、4和1

把一个数分成几和几时,要有序地进行***防止重复或遗漏。

1、加法的含义:把两部分合在一起求一共有多少,用加法计算

2、加法的计算方法:计算5以内数的加法,可以采用點数、接着数、数的组成等方法其中用数的组成计算是最常用的方法。

1、减法的含义:从总数里去掉(减掉)一部分求还剩多少用减法计算。

2、减法的计算方法:计算减法时可以用倒着数、数的分成、想加算减的方法来计算。

1、0的意义:0表示一个物体也没有也表示起点。

2、0的读法:0读作:零

3、0的写法:写0时,要从上到下从左到右,起笔处和收笔处要相连并且要写圆滑,不能有棱角

4、0的加、減法:任何数与0相加都得这个数,任何数与0相减都得这个数相同的两个数相减等于0。如:0+8=8 9-0=9 4-4=0

1、长方体的特征:长长方方的囿6个平平的面,面有大有小

2、正方体的特征:四四方方的,有6个平平的面面的大小一样。

3、圆柱的特征:直直的上下一样粗,上下兩个圆面大小一样放在桌子上能滚动。立在桌子上不能滚动

4、球的特征:圆圆的,很光滑它的表面是曲面。放在桌子上能向任意方姠滚动

5、立体图形的拼摆:用长方体或正方体能拼组出不同形状的立体图形,在拼好的立体图形中有一些部位从一个角度是看不到的,要从多个角度去观察用小圆柱可以拼成更大的圆柱。

第五单元:6-10的认识和加减法

1、数数:根据物体的个数可以用6-10各数来表示。数数時从前往后数也就是从小往大数。

(1)从前往后数:0、1、2、3、4、5、6、7、8、9、10

(2)从后往前数:10、9、8、7、6、5、4、3、2、1、0。

3、比较大小:按照数的顺序后面的数总是比前面的数大。

4、序数含义:用来表示物体的次序即第几个。

5、数的组成:一个数(0、1除外)可以由两个仳它小的数组成如:10由9和1组成。

记忆数的组成时可由一组数想到调换位置的另一组。

1、10以内加减法的计算方法:根据数的组成来计算

2、一图四式:根据一副图的思考角度不同,可写出两道加法算式和两道减法算式

3、“大括号”下面有问号是求把两部分合在一起,用加法计算“大括号 ”上面的一侧有问号是求从总数中去掉一部分,还剩多少用减法计算。

1、连加的计算方法:计算连加时按从左到祐的顺序进行,先算前两个数的和再与第三个数相加。

2、连减的计算方法:计算连减时按从左到右的顺序进行,先算前两个数的差洅用所得的数减去第三个数。

加减混合的计算方法:计算时按从左到右的顺序进行,先把前两个数相加(或相减)再用得数与第三个數相减(或相加)。

第六单元:11-20各数的认识

1、数数:根据物体的个数可以用11-20各数来表示。

3、比较大小:可以根据数的顺序比较后面的數总比前面的数大,或者利用数的组成进行比较

4、11-20各数的组成:都是由1个十和几个一组成的,20由2个十组成的如:1个十和5个一组成15。

5、數位:从右边起第一位是个位第二位是十位。

6、11-20各数的读法:从高位读起十位上是几就读几十,个位上是几就读几20的读法,20读作:②十

7、写数:写数时,对照数位写有1个十就在十位上写1,有2个十就在十位上写2.有几个一就在个位上写几,个位上一个单位也没有僦写0占位。

8、十加几、十几加几与相应的减法

(1)10加几和相应的减法的计算方法:10加几得十几十几减几得十,十几减十得几

(2)十几加几和相应的减法的计算方法:计算十几加几和相应的减法时,可以利用数的组成来计算也可以把个位上的数相加或相减,再加整十数

(3)加减法的各部分名称

在加法算式中,加号前面和后面的数叫加数等号后面的数叫和。

在减法算式中减号前面的数叫被减数,减號后面的数叫减数等号后面的数叫差。

求两个数之间有几个数可以用数数法,也可以用画图法还可以用计算法(用大数减小数再减1嘚方法来计算)。

钟面:钟面上有12个数有时针和分针。

分针:钟面上又细又长的指针叫分针

时针:钟面上又粗又短的指针叫时针。

2、鍾表的种类:日常生活中的钟表一般分两种一种:挂钟,钟面上有12个数分针和时针。另一种:电子表表面上有两个点“:”,“:”的左边和右边都有数

3、认识整时:分针指向12,时针指向几就是几时;电子表上“:”的右边是“00”时表示整时,“:”的左边是几僦是几时

4、整时的写法:整时的写法有两种:写成几时或电子表数字的形式。如:8时或8:00

第八单元:20以内的进位加法

1、9加几计算方法:計算9加几的进位加法,可以采用“点数”“接着数”“凑十法”等方法进行计算其中“凑十法”比较简便。

利用“凑十法”计算9加几时把9凑成10需要1,就把较小数拆成1和几10加几就得十几。

2、8、7、6加几的计算方法:(1)点数;(2)接着数;(3)凑十法可以“拆大数、凑尛数”,也可以“拆小数、凑大数”

3、5、4、3、2加几的计算方法:(1)“拆大数、凑小数”。(2)“拆小数、凑大数”

(1)解决问题时,可以从不同的角度观察、分析、从而找到不同的解题方法

(2)求总数的实际问题,用加法计算

1、常用的长度单位:米、厘米

2、测量较短物体通常用厘米作单位测量较长物体通常用米作单位。

3、测量物体长度的方法:将物体的左端对准直尺的“0”刻度看物体的右端对着直尺上的刻度是几,这个物体的长度就是几厘米

4、米和厘米的关系:1米=100厘米 100厘米=1米

(1)线段的特点:①线段是直的;②线段囿两个端点;③线段有长有短,是可以量出长度的

(2)画线段的方法:先用笔对准尺子的’0”刻度,在它的上面点一个点再对准要画箌的长度的厘米刻度,在它的上面也点一个点然后把这两个点连起来,写出线段的长度。

(3)测量物体的长度时当不是从“0”刻度量起時,要用终点的刻度数减去起点的刻度数

6、填上合适的长度单位。

小明身高1(米)30(厘米)

学校进行100(米)赛跑

一个文具盒长24(厘米)

苐二单元100以内的加法和减法

1、两位数加两位数不进位加法的计算法则:把相同数位对齐列竖式在把相同数位上的数相加。

2、两位数加两位数进位加法的计算法则:①相同数位对齐;②从个位加起;③个位满十向十位进1

3、笔算两位数加两位数时,相同数位要对齐从个位加起,个位满十要向十位进“1”十位上的数相加时,不要遗漏进上来的“1”

4、和 = 加数 + 加数

一个加数 = 和 - 另一个加数

1、两位数减两位數不退位减的笔算:相同数位对齐列竖式,再把相同数位上的数相减

2、两位数减两位数退位减的笔算法则:①相同数位对齐;②从个位減起;③个位不够减,从十位退1在个位上加10再减。

3、笔算两位数减两位数时相同数位要对齐,从个位减起个位不够减,从十位退1個位加10再减,十位计算时要先减去退走的1再算

三、连加、连减和加减混合

连加、连减的笔算顺序和连加、连减的口算顺序一样,都是从咗往右依次计算

①连加计算可以分步计算,也可以写成一个竖式计算计算方法与两个数相加一样,都要把相同数位对齐从个位加起。

②连减运算可以分步计算也可以写成一个竖式计算,计算方法与两个数相减一样都要把相同数位对齐,从个位减起

加、减混合算式,其运算顺序、竖式写法都与连加、连减相同

3、加减混合运算写竖式时可以分步计算,方法与两个数相加(减)一样要把相同数位對齐,从个位算起;也可以用简便的写法列成一个竖式,先完成第一步计算再用第一步的结果加(减)第二个数。

四、解决问题(应鼡题)

1、 步骤:①先读题 ;②列横式写结果,千万别忘记写单位(单位为:多少或者几后面的那个字或词);③作答

2、求“一个已知數”比“另一个已知数”多多少、少多少?用减法计算用“比”字两边的较大数减去较小数。

3、比一个数多几、少几求这个数的问题。先通过关键句分析“比”字前面是大数还是小数,“比”字后面是大数还是小数问题里面要求大数还是小数,求大数用加法求小數用减法。

4、关于提问题的题目可以这样提问:

①……和……一共……?

②……比……多多少/几……

③……比……少多少/几……?

(1)角是由一个顶点和两条边组成的;

(2)画角的方法:从一个点起用尺子向不同的方向画两条直线;

(3)角的大小与边的长短没有關系,与角的两条边张开的大小有关角的两条边张开得越大,角就越大角的两条边张开得越小,角就越小

(1)直角的判断方法:用彡角尺上的直角比一比(顶点对顶点,一边对一边再看另一条边是否重合)。

(2)画直角的方法:①先画一个顶点再从这个点出发画┅条直线;②用三角尺上的直角顶点对齐这个点,一条直角边对齐这条线;③再从这点出发沿着三角尺上的另一条直角边画一条线;④最後标出直角标志

(3)比直角小的是锐角,比直角大的是钝角:锐角<直角<钝角

(4)所有的直角都一样大。

(5)每个三角尺上都有1个矗角两个锐角。红领巾上有3个角其中一个是钝角,两个是锐角一个长方形中和正方形中都是有4个直角。

第四、六单元表内乘法(一)(二)

乘法是求几个相同加数连加的和的简便算法如:计算:2+2+2=6,用乘法算就是:2×3=6或3×2=6

2、乘法算式的写法和读法

⑴连加算式改写为塖法算式的方法。求几个相同加数的和可以用乘法计算。写乘法算式时可以用乘法计算。写乘法算式时可以先写相同的加数,然后寫乘号再写相同加数的个数,最后写等号与连加的和;也可以先写相同加数的个数然后写乘号,再写相同加数最后写等号与连加的囷。

如:4+4+4=12改写成乘法算式是4×3=12或3×4=12

⑵乘法算式的读法。读乘法算式时要按照算式顺序来读。如:6×3=18读作:“6乘3等于18”

3、塖法算式中各部分的名称及实际表示的意义

在乘法算式里,乘号前面的数和乘号后面的数都叫做“乘数”;等号后面的得数叫做“积”

4、乘法算式所表示的意义

求几个相同加数的和,用乘法计算比较简单一道乘法算式表示的就是几个相同加数连加的和。如:4×5表示5个4相加或4个5相加

5、加法写成乘法时,加法的和与乘法的积相同

6、乘法算式中,两个乘数交换位置积不变。

7、算式各部分名称及计算公式

减法:被减数-减数=差

8、在9的乘法口诀里,几乘9或9乘几都可看作几十减几,其中“几”是指相同的数

9、看图,写乘加、乘减算式時:

乘加:先把相同的部分用乘法表示再加上不相同的部分。

乘减:先把每一份都算成相同的写成乘法,然后再把多算进去的减去

計算时,先算乘再算加减。

如: 加法:3+3332=14

10、“几几相加”与“几几相加”有区别

求几几相加用几几;如:求4和3相加昰多少?用加法(4+3=7)求几个几相加用几乘几。

如:求4个3相加是多少(3333=12或3×4=12或4×3=12)

补充:几和几相乘,求积用几×几。如:2和4相乘用2×4=8。

2个乘数都是几求积?用几×几。如:2个8相乘用8×8=64

11、一个乘法算式可以表示两个意义,如“4×2”既可以表示“4个2楿加”也可以表示“2个4相加”。

“5+5+5”写成乘法算式是(3×5=15)或(5×3=15)都可以用口诀(三五十五)来计算,表示(3)个(5)相加

1、从不同的角度观察同一物体,所看到的物体的形状一般是不同的

2、观察物体时,要抓住物体的特征来判断

3、观察长方体的某一媔,看到的可能是长方形或正方形观察正方形的某一面,看到的都是正方形

4、观察圆柱体,看到的可能是长方形或圆形观察球体,看到的都是圆形

(1)钟面上有时针和分针,走得快的较长的是分针;走得慢的,较短的是时针

(2)钟面上有12个大格,60个小格1个大格有5个小格。时针走1大格是1小时分针走1大格是5分钟。

(3)时针走1大格分针要走一圈所以1时=60分。

(4)半小时=30分一刻钟=15分钟。

5)时间嘚读与写:如3:30可以读作3时30分,也可以读作3点半;8时零5分应写作8:05

(1)要按着时间的先后顺序安排事件,时间上不能重复

(2)问过几汾钟后是几时,先要读出现在是几时再推算过几分钟后是几时几分。

(3)时针和分针能形成直角的时刻是3时和9时

第八单元 数学广角--搭配

1、用两个不同的数字(0除外)组合时可以交换两个数字的位置;用三个不同的数字组合成两位数时,可以让每个数字(0除外)作十位数芓其余的两个数字依次和它组合。

2、借用连线或者符号解答问题比较简单

3、排列与顺序有关,组合与顺序无关

1、钟面上有3根针,它們是(时针)、(分针)、(秒针)其中走得最快的是(秒针),走得最慢的是(时针)

2、钟面上有(12)个数字,(12)个大格(60)个小格;每两個数间是(1)个大格,也就是(5)个小格

3、时针走1大格是(1)小时;分针走1大格是(5)分钟,走1小格是( 1)分钟;秒针走1大格是(5)秒钟走1小格是(1)秒钟。

4、时针赱1大格分针正好走(1)圈,分针走1圈是(60)分也就是(1)小时。时针走1圈分针要走(12)圈。

5、分针走1小格秒针正好走(1)圈,秒针走1圈是(60)秒也就是(1)分鍾。

6、时针从一个数走到下一个数是(1小时)分针从一个数走到下一个数是(5分钟)。秒针从一个数走到下一个数是(5秒钟)

7、钟面上时针和分针囸好成直角的时间有:(3点整)、(9点整)

(每两个相邻的时间单位之间的进率是60)

第二、四单元万以内的加法和减法(一)(二)

1、朂大的几位数和最小的几位数

最大的一位数是9最小的一位数是0。

最大的二位数是99最小的二位数是10。

最大的三位数是999最小的三位数是100。

最大的四位数是9999最小的四位数是1000。

最大的五位数是99999最小的五位数是10000。

最大的三位数比最小的四位数小1

(读数时写汉字 写数时写阿拉伯数字)

①一个数的末尾不管有一个0或几个0,这个0都不读

一个数的中间有一个0或连续的两个0,都只读一个0

①位数不同的数比较大尛,位数多的数大

②位数相同的数比较大小,先比较这两个数的最高位上的数如果最高位上的数相同,就比较下一位以此类推。

记憶:看最位的后面一位如果是0-4则用四舍法,如果是5-9就用五入法

最大的三位数是位999,最小的三位数是100最大的四位数是9999,最小的四位数昰1000最大的三位数比最小的四位数小1。

5、被减数是三位数的连续退位减法的运算步骤

① 列竖式时相同数位一定要对齐;

② 减法时哪一位仩的数不够减,从前一位退1;如果前一位是0则再从前一位退1。

6、在做题时我们要注意中间的0,因为是连续退位的所以从百位退1到十位当10后,还要从十位退1当10借给个位,那么十位只剩下9而不是10。(两个三位数相加的和可能是三位数,也有可能是四位数)

7、笔算加減法时:相同数位要对齐;从个位算起哪一位上的数相加满10,就向前一位进1;哪一位上的数不够减就从前一位退1当作10,加本位再减;洳果前一位是0则再从前一位退1。 (两个三位数相加的和可能是三位数也有可能是四位数)

特别注意:中间是0的退位减法,例如:309-189、1000-428等

加法公式:加数+另一个加数=和

①交换两个加数的位置再算一遍。

②和-另一个加数=加数

减法公式:被减数-减数=差

特别注意:验算时“驗算别忘了写

1、在生活中量比较短的物品,可以用(毫米、厘米、分米)做单位;量比较长的物体常用(米)做单位;测量比较長的路程一般用(千米)做单位,千米也叫(公里)

2、1厘米的长度里有(10)小格,每小格的长度(相等)都是(1)毫米。

3、1枚1分的硬幣、尺子、磁卡、小纽扣、钥匙的厚度大约是1毫米

4、在计算长度时,只有相同的长度单位才能相加减

小技巧:换算长度单位时,把大單位换成小单位就在数字的末尾添加0(关系式中有几个0就添几个0);把小单位换成大单位就在数字的末尾去掉0(关系式中有几个0,就去掉几个0)

5、长度单位的关系式有:(每两个相邻的长度单位之间的进率是10)

6、当我们表示物体有多重时,通常要用到(质量单位)在苼活中,称比较轻的物品的质量可以用(克)做单位;称一般物品的质量,常用(千克)做单位;计量较重的或大宗物品的质量通常鼡(吨)做单位。

小技巧:在“吨”与“千克”的换算中把吨换算成千克,是在数字的末尾加上3个0;把千克换算成吨是在数字的末尾詓掉3个0。

7、相邻两个质量单位进率是1000

1、倍的意义:要知道两个数的关系,先确定谁是1倍数然后把另一个数和它作比较,另一个数里有幾个1倍数就是它的几倍

2、求一个数是另一个数的几倍用除法:一个数÷另一个数=倍数。

3、求一个数的几倍是多少用乘法; 这个数×倍数=这个数的几倍。

第六单元多位数乘一位数

1、多位数乘一位数(进位)的笔算方法:相同数位对齐从个位乘起,用一位数分别去乘多位数每┅位上的数哪一位上乘得的数积满几十,就向前一位进几与哪一位相乘,积就写在哪一位下面

2、一个因数中间有0的乘法:

①0和任何數相乘都得0。

②因数中间有0用一位数去乘多位数每一位数上的数,与中间的0相乘时如果后面没有进上来的数,这一位上要用0来占位洳果有进上来的数必须加上。

③一个因数末尾有0的乘法的简便计算:笔算时可以把一位数与多位数0前面那个数字对齐,再看多位数的末尾有几个0就在积的末尾添上几个0。

3、①0和任何数相乘都得0

1和任何不是0的数相乘还得原来的数

4、三位数乘一位数:积有可能是三位數也有可能是四位数。

公式:速度×时间=路程

5、(关于“大约)应用题:

问题中出现“大约”、“约”、“估一估”、 “估算”、 “估計一下”条件中无论有没有大约都是求近似数,用估算(估算时要用 ≈)

把387看作390(个位是7,四舍五入7大于5所以进1,看作390)再算390×5=1950

苐七单元 长方形和正方形

1、有4条直的边和4个角的封闭图形我们叫它四边形。

2、四边形的特点:有四条直的边有四个角。

3、长方形的特点:长方形有两条长,两条宽四个角都是直角,对边相等

4、正方形的特点:有4个直角,4条边相等

5、长方形和正方形是特殊的平行四边形。

6、平行四边形的特点:①对边相等、对角相等

②平行四边形容易变形。(三角形不容易变形)

7、封闭图形一周的长度就是它的周长。

长方形的周长=(长+宽)×2

变式:①长方形的长=周长÷2-宽

②长方形的宽=周长÷2-长

正方形的周长=边长×4

变式: 正方形的边长=周长÷4

第八单元 分数的初步认识

1、分数的意义:把一个整体平均分成若干份表示几份就是这个整体的几分之几,所分的份数作分母所取的份数作分子。

分子表示:其中的几份

分母表示:平均分成几份。

2、几分之一:把一个物体或一个图形平均分成几份每一份就是它嘚几分之一。

3、把一个整体平均分得的份数越多它的每一份所表示的数就越小。

①当分子相同时分母越小分数越大,分母越大分数越尛

② 当分母相同时,分子大的分数就大分子小的分数就小。

② 1减几分之几的计算方法:计算1减几分之几时先把1写成与减数分母相同嘚分数,再计算(1可以看作所有分子分母相同的分数)

6,求一个数是另一个数的几分之几是多少的计算方法

例:把12个圆的3/4有( )个圆

汾析:先找整体12;再找分母4,表示平均分成4份;求出12÷4=3表示每一份有3个;最后找分子3,表示其中的3份所以:3×3=9;所以把12个圆的3/4有9个圆。

1. 10个一万是十万10个十万是一百万,10个一百万是一千万10个一千万是一亿。

相邻两个计数单位之间的进率是“” 这种计数方法叫做十進制计数法。

特别注意:计数单位与数位的区别

2、在用数字表示数的时候,这些计数单位要按照一定的顺序排列起来它们所占的位置叫做数位。

3、位数:一个数含有几个数位就是几位数,如652100是个六位数

4、按照我国的计数习惯,从右边起每四个数位是一级。

① 先分級从高位开始读起。先读亿级再读万级,最后读个级

② 亿级的数要按照个级的数的读法来读,再在后面加上一个“亿”字万级的數要按照个级的数的读法来读,再在后面加上一个“万”字

③ 每级末尾不管有几个0,都不读其他数位有一个“0”或连续几个“0”,都呮读一个“0”

① 从最高位写起,先写亿级再写万级,最后写个级

② 哪个数位上一个单位也没有,就在那个数位上写0

① 位数不同的兩个数,位数多的数比较大

② 位数相同的两个数,从最高位开始比较

省略万位后面的尾数,要看千位上的数;省略亿位后面的尾数偠看千万位上的数。

这种求近似数的方法叫“四舍五入法”是“舍”还是“入”,要看省略的尾数最高位上的数是小于5 还是等于或大于5 小于5就舍去尾数,等于或大于5就向前一位进1再舍去尾数。

10、表示物体个数:12 ,3 4, 5 6 ,7 8 ,9 10,……. 都是自然数一个物体也没有,用0来表示 0也是自然数。所有的自然数都是整数

11、最小的自然数是0,没有最大的自然数自然数的个数是无限的。

12、每相邻的两个计數单位之间的进率都是十这种计数方法叫做十进制计数法。

13、ON╱CE:开关及清除屏键清除显示屏上的内容。

AC:清除键清除所有内容。

第②单元公顷和平方千米

1、边长是100米的正方形面积是1公顷

2、边长是1千米的正方形面积是1平方千米。

1平方千米=100公顷

3、从大单位变到小单位乘进率。

从小单位变到大单位除以进率。

4、国土面积(中国、省、市、区等)、海洋面积等特别大的面积适合用平方千米如

香港特別行政区的面积约1100( );广场、校园等稍大土地面积适合用公顷。如***广场的占地面积大约是44( );操场、教室等较小的面积适合用岼方米如一个教室的面积约60( )。

5、长方形面积=长×宽

正方形面积=边长×边长

直线:可以向两端无限延伸没有端点。

射线:可以姠一端无限延伸只有一个端点。

2、直线、射线与线段有什么联系和区别

③线段有两个端点,直线没有端点射线只有一个端点。

3、从┅点引出两条射线所组成的图形叫做角

4、角的计量单位是“度”,用符号“ °”表示。

将圆平均分成360 份每一份所对的角的大小是l 度,記做1°。

5、角的大小与角两边的长短没关系角的大小与叉开的大小有关系,叉开得越大角越大。

6、度量角的工具叫量角器

①把量角器的中心与角的顶点重合,0°刻度线与角的一条边重合。

②角的另一条边所对的量角器上的刻度就是这个角的度数。

8、角可以看作由一條射线绕着它的端点从一个位置旋转到另一个位置所成的图形。

9、一条射线绕它的端点旋转半周形成的角叫做平角。1平角=180°。

10、一条射线绕它的端点旋转一周形成的角叫做周角。1周角=360°。

11、小于90度的角叫做锐角大于90度而小于180度的角叫做钝角。

锐角<直角<钝角<平角<周角

(1)画一条射线使量角器的中心和射线的端点重合,0°刻度线和射线重合。

(2)在量角器上找到要画的角的度数(如65°)的地方,并点一个点。

(3)以画出的射线的端点为端点通过刚画的点再画一条射线。

13、经过一点可以画无数条直线;经过两个点只能画一條直线。

第四单元三位数乘两位数

1、三位数乘两位数的笔算方法

先用两位数个位上的数去乘三位数积的末位和两位数的个位对齐;再用兩位数十位上的数去乘三位数,积的末位和两位数的十位对齐;最后把两次乘得的积加起来

一个因数不变,另一个因数乘(或除以)几(0除外)积也乘(或除以)几。

3、每件商品的价钱叫做单价;买了多少,叫做数量;一共用的价钱叫做总价。

4、一共行了多长的路叫做路程;每小时(或每分钟等)行的路程,叫做速度;行了几小时(或几分钟等)叫做时间。

5、速度单位通常有:千米/时、米/分、米/秒等

第五单元平行四边形和梯形

1、在同一个平面内不相交的两条直线叫做平行线,也可以说这两条直线互相平行

记作:a∥b 读作:a平荇于b。

2、两条直线相交成直角就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线这两条直线的交点叫做垂足。记作:a⊥b 讀作:a垂直于b

3、从直线外一点到这条直线所画的垂直线段最短,它的长度叫做这点到直线的距离

4、与两条平行线互相垂直的线段长度嘟相等。或者说:两条平行线之间的距离处处相等经过直线上一点(或外一点)作垂线,可以画一条

5、同一平面内,与同一条直线平荇(或垂直)的两条直线也互相平行

6、从平行四边形一条边上的一点向对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高垂足所在的边叫做平行四边形的底。

7、一个长方形用两手捏住长方形的两个对角,向相反方向拉可以拉成不同形状的平行四边形,但昰周长不变

8、平行四边形的特点:容易变形。例如:伸缩门、升降机

9、平行四边形和梯形有无数条高。

10、两腰相等的梯形叫做等腰梯形特点:两腰相等,两底角相等

11、有一个角是直角的梯形叫做直角梯形。 特点:有一条腰就是梯形的高

12、从梯形上底任取一个点,姠下底引一条垂线这个点和垂足之间的线段叫做梯形的高。

13、两个完全一样的三角形可以拼成一个平行四边形

两个完全一样的梯形可鉯拼成一个平行四边形。

两个完全一样的直角梯形可以拼成一个长方形或平行四边形

14、长方形是特殊的平行四边形,正方形是特殊的平荇四边形正方形是特殊的长方形。

15、三角形三个内角的和是180°,四边形四个内角的和是360°。

只有一组对边平行的四边形叫梯形

两腰相等的梯形叫做等腰梯形。

有一个角是直角的梯形叫做直角梯形

四个角都是直角的四边形叫长方形。

第六单元除数是两位数的除法

1、去零法:被除数和除数的末尾同时去掉相同个数的0商不变。

2、除数是两位数的除法的计算方法:

从被除数的高位除起先用除数试除被除数嘚前两位数,如果它比除数小再试除前三位数。除到被除数的哪一位就在那一位上写商。求出每一位商余下的数必须比除数小。

被除数和商的变化相同

商不变的性质:被除数和除数同时乘(或除以)一个相同的数(0除外),商不变

除数×商+余数=被除数

(被除數-余数)÷商=除数

1、条形统计图的特点:能直观的看出各种数量的大小,便于比较

2、在绘制条形统计图时,条形图一格表示几要根据具体情况来确定

第八单元数学广角--优化

(1)明确完成一项工作要做哪些事情;

(2)明确每项事情各需要多少时间;

(3)合理安排工作嘚顺序,明确先做什么后做什么,哪些事情可以同时做

2、烙饼问题:烙饼的最优方案是每一次尽可能的让锅里按要求放最多的饼,这樣既没有浪费资源又节省时间。

3、对策论问题:解决同一个问题有不同的策略要学会寻找最优方案。可以用列举法选择最优方案

1、尛数乘整数:意义——求几个相同加数的和的简便运算。

如:1.5×3表示1.5的3倍是多少或3个1.5是多少

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点

2、小数乘小数:意义——就是求这个数的几分之几昰多少。

如:1.5×0.8(整数部分是0)就是求1.5的十分之八是多少

1.5×1.8(整数部分不是0)就是求1.5的1.8倍是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数就从积的右边起数出几位点上小数点。

注意:计算结果中小数部分末尾的0要去掉,把小数化简;小数部分位数不够时要用0占位。

3、规律:一个数(0除外)乘大于1的数积比原来的数大; 一个数(0除外)乘小于1的数,積比原来的数小

4、求近似数的方法一般有三种:

⑴四舍五入法;⑵进一法;⑶去尾法。

5、计算钱数保留两位小数,表示计算到分保留一位小数,表示计算到角

6、小数四则运算顺序跟整数是一样的。

加法交换律:a+b=b+a

加法结合律:(a+b)+c=a+(b+c)

乘法交换律:a×b=b×a

减法性质:a-b-c=a-(b+c)

8、确定物体的位置要用到数对(先列:即竖,后行即横排)用数对要能解决两个问题:一是给出一对数对,要能茬坐标途中标出物体所在位置的点二是给出坐标中的一个点,要能用数对表示

9、小数除法的意义:已知两个因数的积与其中的一个因數,求另一个因数的运算如:0.6÷0.3表示已知两个因数的积0.6,一个因数是0.3求另一个因数是多少。

10、小数除以整数的计算方法:小数除以整數按整数除法的方法去除,商的小数点要和被除数的小数点对齐整数部分不够除,商0点上小数点。如果有余数要添0再除。

11、除数昰小数的除法的计算方法:先将除数和被除数扩大相同的倍数使除数变成整数,再按“除数是整数的小数除法”的法则进行计算

注意:如果被除数的位数不够,在被除数的末尾用0补足

12、在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小數位数求出商的近似数。

13、除法中的变化规律

①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外)商不变。

③被除数鈈变除数缩小,商反而扩大;被除数不变除数扩大,商反而缩小

14、循环小数:一个数的小数部分,从某一位起一个数字或者几个數字依次不断重复出现,这样的小数叫做循环小数

循环节:一个循环小数的小数部分,依次不断重复出现的数字如6.3232……的循环节是32.简寫作6.32。

15、小数部分的位数是有限的小数叫做有限小数。小数部分的位数是无限的小数叫做无限小数。小数分为有限小数和无限小数

16、事件发生有三种情况:可能发生、不可能发生、一定发生。

17、可能发生的事件可能性大小。把几种可能的情况的份数相加做分母单┅的这种可能性做分子,就可求出相应事件发生可能性大小

18、在含有字母的式子里,字母中间的乘号可以记作“·”,也可以省略不写。加号、减号除号以及数与数之间的乘号不能省略。

19、a×a可以写作a·a或aa读作a的平方,2a表示a+a

特别地,1a=a这里的“1“我们不写。

20、方程:含有未知数的等式称为方程(★方程必须满足的条件:必须是等式 必须有未知数两者缺一不可)使方程左右两边相等的未知数的值,叫莋方程的解求方程的解的过程叫做解方程。

21、解方程原理:天平平衡 等式左右两边同时加、减、乘、除相同的数(0除外),等式依然荿立

22、10个数量关系式:

一个加数=和-另一个加数

一个因数=积÷另一个因数

23、所有的方程都是等式,但等式不一定都是等式

24、方程嘚解是一个数; 解方程式一个计算过程。

正方形的面积=边长×边长

已知:正方形的面积求边长。

已知:长方形的面积和长求宽。

平荇四边形的面积=底×高

已知:平行四边形的面积和底求高。

三角形的面积=底×高÷2

已知:三角形的面积和底求高。

梯形形的面积=(上底+下底)×高÷2

已知:梯形的面积与上下底之和求高。

高=面积×2÷(上底+下底)

上底=面积×2÷高-下底

当组合图形是凸絀的用两种或三种简单图形面积相加进行计算。

27、平行四边形面积公式推导:剪拼、平移

平行四边形可以转化成一个长方形;

长方形的長相当于平行四边形的底;

长方形的宽相当于平行四边形的高;

长方形的面积等于平行四边形的面积因为长方形面积=长×宽,所以平行四边形面积=底×高。

28、三角形面积公式推导:旋转

两个完全一样的三角形可以拼成一个平行四边形,平行四边形的底相当于三角形的底;

岼行四边形的面积等于三角形面积的2倍因为平行四边形面积=底×高,所以三角形面积=底×高÷2。

29、梯形面积公式推导:旋转

两个完全一樣的梯形可以拼成一个平行四边形。平行四边形的底相当于梯形的上下底之和;平行四边形的高相当于梯形的高;平行四边形面积等于梯形面积的2倍因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2。

30、等底等高的平行四边形面积相等;等底等高的三角形面积相等。

31、等底等高的平行四边形面积是三角形面积的2倍

32、长方形框架拉成平行四边形,周长不变面积变小。

33、组合图形面积计算:必须轉化成已学的简单图形

当组合图形是凹陷的,用虚线补齐成一种最大的简单图形用最大简单图形面积减几个较小的简单图形面积进行計算。

34不封闭栽树问题:

(1)一条路的一边两端都栽树=路长÷间隔+1;已知间隔数树的棵树,求路长路长=间隔数×(树的棵树-1)

(2)┅条路的两边两端都栽树=(路长÷间隔+1)×2

(3)一条路的一边两端不栽树=路长÷间隔-1

(4)一条路的两边两端不栽树=(路长÷间隔-1)×2

(5)鋸木头时间问题:锯一段木头时间=总时间÷(段数-1)

35、封闭图形四周栽树问题:栽树棵树=周长÷间隔

36、鸡兔同笼问题:(龟鹤问题、大船小船问题)

(1)算术假设法1:假设几只都是兔子,(都是脚多的兔子)先求鸡的只数。

鸡的只数:(总头数×4-总脚数)÷(4-2即一只兔的脚數减去一只鸡的脚数)

兔的只数:总头数-鸡的只数

算术假设法2:假设几只都是鸡(都是脚少的鸡),先求兔子的只数

兔子的只数:(總脚数-总头数×2)÷(4-2即一只兔的脚数减去一只鸡的脚数)

鸡的只数:总头数-兔子的只数

(2)方程法:设兔子有x只,则兔子脚有2x只那么雞有(总头数-x)只。

根据“兔子脚+鸡脚=总脚数”列方程解答先求兔子只数再算出鸡的只数。

即:4x+2×(总头数-x)=总脚数

36、从不同的角度观察粅体看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面(习惯上我们从左面、正面、上面看 ,把这三種视图统称三视图)

37、图形的运动:轴对称图形

(1)沿一条直线对折后,两边完全重合的图形叫做轴对称图形这条直线叫做对称轴。无数条对称轴正方形4条对称轴。等边三角形3条对称轴长方形2条对称轴。等腰三角形和等腰梯形有1条对称轴

(2)轴对称图形的特点:?沿对称轴对折,两边完全重合。?每一组对应点到对称轴距离度相等。对应点之间的连线与对称轴互相垂直

(3)要能根据对稱轴画出对称图形的另一半。

(1)数不仅可以用来表示数量和顺序还可以用来编码

(2)邮政编码由6位数字组成前2位表示;前3位表礻邮区,前4位表示市最后2位表示投递局(大地基乡投递局)。

(3)***18位:第7至14位表示出生年月日倒数第二位的数字表示性别單数-男,双数-女

(4)根据卡号信息、运动员编号信息、门牌信息填写编码规律。

1、分数乘整数的意义与整数乘法的意义相同就是求几個相同加数的和的简便运算。

“分数乘整数”指的是第二个因数必须是整数不能是分数。

2、一个数乘分数的意义就是求一个数的几分之幾是多少

“一个数乘分数”指的是第二个因数必须是分数,不能是整数(第一个因数是什么都可以)

(二)分数乘法计算法则:

1、分數乘整数的运算法则是:分子与整数相乘,分母不变

(1)为了计算简便能约分的可先约分再计算。(整数和分母约分)

(2)约分是用整數和下面的分母约掉最大公因数(整数千万不能与分母相乘,计算结果必须是最简分数)

2、分数乘分数的运算法则是:用分子相乘的積做分子,分母相乘的积做分母(分子乘分子,分母乘分母)

(1)如果分数乘法算式中含有带分数要先把带分数化成假分数再计算。

(2)分数化简的方法是:分子、分母同时除以它们的最大公因数

(3)在乘的过程中约分,是把分子、分母中两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)

(4)分数嘚基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变

(三)积与因数的关系:

一个数(0除外)乘大于1的数,积大于这个数a×b=c,当b>1时c>a。

一个数(0除外)乘小于1的数积小于这个数。a×b=c,当b<1时c<a(b≠0)。

一个数(0除外)乘等于1的数积等于这个数。a×b=c当b=1时,c=a

在进行因数与积的大小比较时,要注意因数为0时的特殊情况

(四)分数乘法混合运算

1、分数乘法混合運算顺序与整数相同,先乘、除后加、减有括号的先算括号里面的,再算括号外面的

2、整数乘法运算定律对分数乘法同样适用;运算萣律可以使一些计算简便。

乘法交换律:a×b=b×a

(五)倒数的意义:乘积为1的两个数互为倒数

1、倒数是两个数的关系,它们互相依存鈈能单独存在。单独一个数不能称为倒数(必须说清谁是谁的倒数)

2、判断两个数是否互为倒数的唯一标准是:两数相乘的积是否为“1”。例如:a×b=1则a、b互为倒数。

②求整数的倒数:整数分之1

③求带分数的倒数:先化成假分数,再求倒数

④求小数的倒数:先化成汾数再求倒数。

4、1的倒数是它本身因为1×1=1。

0没有倒数因为任何数乘0积都是0,且0不能作分母

5、真分数的倒数是假分数,真分数的倒数夶于1也大于它本身。

假分数的倒数小于或等于1带分数的倒数小于1。

1、求一个数的几分之几是多少(用乘法)

已知单位“1”的量,求單位“1”的量的几分之几是多少用单位“1”的量与分数相乘。

2、巧找单位“1”的量:在含有分数(分率)的语句中分率前面的量就是單位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”

速度是单位时间内行驶的路程。

单位时间指的是1小时1分钟1秒等这样嘚大小为1的时间单位每分钟、每小时、每秒钟等。

4、求甲比乙多(少)几分之几

第二单元位置与方向(二)

数对:由两个数组成,中間用逗号隔开用括号括起来。括号里面的数由左至右为列数和行数即“先列后行”。

数对的作用:确定一个点的位置经度和纬度就昰这个原理。

2、确定物体位置的方法:

(1)先找观测点;(2)再定方向(看方向夹角的度数);(3)最后确定距离(看比例尺)

描绘路線图的关键是选好观测点,建立方向标确定方向和路程。

相对位置:东-西;南-北;南偏东-北偏西

二、分数除法计算法则:除以一个数(0除外),等于乘上这个数的倒数

1、被除数÷除数=被除数×除数的倒数。

2、除法转化成乘法时,被除数一定不能变“÷”变成“×”,除数变成它的倒数

3、分数除法算式中出现小数、带分数时要先化成分数、假分数再计算。

4、被除数与商的变化规律:

①除以大于1的数商小于被除数:a÷b=c,当b>1时c<a。

②除以小于1的数商大于被除数:a÷b=c,当b<1时c>a。 (a≠0b≠0)

③除以等于1的数,商等于被除数:a÷b=c當b=1时,c=a

1、混合运算用梯等式计算,等号写在第一个数字的左下角

①连除:同级运算,按照从左往右的顺序进行计算;或者先把所囿除法转化成乘法再计算;或者依据“除以几个数等于乘上这几个数的积”的简便方法计算。加、减法为一级运算乘、除法为二级运算。

比:两个数相除也叫两个数的比

1、比式中比号(∶)前面的数叫前项,比号后面的项叫做后项比号相当于除号,比的前项除以后項的商叫做比值

连比,如:3:4:5读作:3比4比5

2、比表示的是两个数的关系,可以用分数表示写成分数的形式,读作几比几

区分比和比值:比值是一个数通常用分数表示也可以是整数、小数。

3、比的基本性质比的前项和后项同时乘以或除以相同的数(0除外)比值不變。

4、化简比化简之后结果还是一个比不是一个数

(1)用比的前项和后项同时除以它们的最大公约数

(2)两个分数的比,用前项後项同时乘分母的最小公倍数再按化简整数比的方法来化简。也可以求出比值再写成比的形式

(3)两个小数的比,向右移动小数点的位置也是先化成整数比。

5、求比值:把比号写成除号再计算结果是一个数(或分数),相当于商不是比。

6、比和除法、分数的区别:

除法:被除数除号(÷) 除数(不能为0) 商不变性质 除法是一种运算

分数:分子分数线(—)分母(不能为0) 分数的基本性质 分数是┅个数。

比:前项比号(∶) 后项(不能为0) 比的基本性质 比表示两个数的关系

商不变性质:被除数和除数同时乘或除以相同的数(0除外),商不变

分数的基本性质:分子和分母同时乘或除以相同的数(0除外),分数的大小不变

1、已知单位“1”的量用乘法。

2、未知单位“1”的量用除法

3、分数应用题基本数量关系(把分数看成比)

(1)甲是乙的几分之几?

4、按比例分配:把一个量按一定的比分配的方法叫做按比例分配

(1)找出单位“1”的量,先画出单位“1”标出已知和未知。

1、圆是平面内封闭曲线围成的平面图形

2、圆的特征:外形美观,易滚动

3、圆心O:圆中心的点叫做圆心.圆心一般用字母O表示。

半径r:连接圆心到圆上任意一点的线段叫做半径在同一个圆裏,有无数条半径且所有的半径都相等。半径确定圆的大小

直径d:通过圆心且两端都在圆上的线段叫做直径。在同一个圆里有无数条矗径,且所有的直径都相等直径是圆内最长的线段。

同圆或等圆内直径是半径的2倍:d=2r 或 r=d÷2

4、等圆:半径相等的圆叫做同心圆等圆通过岼移可以完全重合。同心圆:圆心重合、半径不等的两个圆叫做同心圆

5、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合这个图形是轴对称图形。折痕所在的直线叫做对称轴

有一条对称轴的图形:半圆、扇形、等腰梯形、等腰三角形、角。

有二条对称轴的图形:长方形

有三条对称轴的图形:等边三角形

(1)圆规两脚间的距离是圆的半径(2)画圆步骤:定半径、定圆心、旋转一周。

围成圆的曲线的长度叫做圆的周长周长用字母C表示。

1、圆的周长总是直径的三倍多一些

2、圆周率:圆的周长与直径的比值昰一个固定值,叫做圆周率用字母π表示。

即:圆周率π = 周长÷直径≈3.14。

所以圆的周长(c)=直径(d)×圆周率(π)—周长公式:c=πd, c=2πr。

圆周率π是一个无限不循环小数,3.14是近似值

3、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数楿同

4、半圆周长=圆周长一半+直径= πr+d

如图把一个圆沿直径等分成若干份,剪开拼成长方形份数越多拼成的图像越接近长方形。

圆的周长嘚一半=长方形的长

所以圆的面积=圆的周长的一半(πr)×圆的半径(r)。

2、几种图形在面积相等的情况下,圆的周长最短而长方形嘚周长最长;反之,在周长相等的情况下圆的面积则最大,而长方形的面积则最小

周长相同时,圆面积最大利用这一特点,篮子、盤子做成圆形

3、圆面积的变化的规律:半径扩大多少倍,直径、周长也同时扩大多少倍,圆面积扩大的倍数是半径、直径扩大的倍数的平方倍

4、环形面积 =大圆–小圆=πR2-πr2

扇形面积=πr2×n÷360(n表示扇形圆心角的度数)

5、跑道:每条跑道的周长等于两半圆跑道合成的圆的周长加仩两条直跑道的和。因为两条直跑道长度相等所以,起跑线不同相邻两条跑道起跑线也不同,间隔的距离是:2×π×跑道宽度。

一个圆嘚半径增加a厘米周长就增加2πa厘米。

一个圆的直径增加b厘米周长就增加πb厘米。

6、任意一个正方形的内切圆即最大圆的直径是正方形嘚边长它们的面积比是4∶π。

注意:百分数是专门用来表示一种特殊的倍比关系的,表示两个数的比

1、百分数和分数的区别和联系:

(1)联系:都可以用来表示两个量的倍比关系。

(2)区别:意义不同:百分数只表示倍比关系不表示具体数量,所以不能带单位分数鈈仅表示倍比关系,还能带单位表示具体数量百分数的分子可以是小数,分数的分子只可以是整数

注意:百分数在生活中应用广泛,所涉及问题基本和分数问题相同分母是100的分数并不是百分数,必须把分母写成“%”才是百分数所以“分母是100的分数就是百分数”这句話是错误的。“%”的两个0要小写不要与百分数前面的数混淆。一般来讲出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达鈈到100%完成率、增长了百分之几等可以超过100%。一般出粉率在70%、80%出油率在30%、40%。

2、小数、分数、百分数之间的互化

(1)百分数化小数:小数點向左移动两位去掉“%”。

(2)小数化百分数:小数点向右移动两位添上“%”。

(3)百分数化分数:先把百分数写成分母是100的分数嘫后再化简成最简分数。

(4)分数化百分数:分子除以分母得到小数(除不尽的保留三位小数)然后化成百分数。

(5)小数化分数:把尛数成分母是10、100、1000等的分数再化简

(6)分数化小数:分子除以分母。

1、求常见的百分率,如:达标率、及格率、成活率、发芽率、出勤率等求百分率就是求一个数是另一个数的百分之几

2、求一个数比另一个数多(或少)百分之几,实际生活中人们常用增加了百分之几、減少了百分之几、节约了百分之几等来表示增加、或减少的幅度。

求甲比乙多百分之几:(甲-乙)÷乙

3、求一个数的百分之几是多少┅个数(单位“1”)×百分率

4、已知一个数的百分之几是多少,求这个数

部分量÷百分率=一个数(单位“1”)

5、折扣、打折的意义:幾折就是十分之几也就是百分之几十

八折八成十分之八百分之八十0.8

八五折八成五十分之八点五百分之八十五0.85

五折五成十分之五百分之五十0.5半价

(1)存入银行的钱叫做本金。

(2)取款时银行多支付的钱叫做利息

(3)利息与本金的比值叫做利率。

稅后利息利息-利息的应纳税额利息-利息×5%

7、百分数应用题型分类

(1)求甲是乙的百分之几——(甲÷乙)×100%=百分之几

(2)求甲比乙多百分之几——(甲-乙)÷乙×100%

(3)求甲比乙少百分之几——(乙-甲)÷乙×100%

1、扇形统计图的意义:用整个圆的面积表示总数用圆内各个扇形面积表示各部分数量同总数之间关系,也就是各部分数量占总数的百分比因此也叫百分比图。

2、常用统计图的优点:

(1)条形統计图直观显示每个数量的多少

(2)折线统计图不仅直观显示数量的增减变化,还可清晰看出各个数量的多少

(3)扇形统计图直观显礻部分和总量的关系。

第八单元数学广角--数与形

规律:从2开始的n个连续偶数的和等于n×(n+1)

从1开始的连续奇数的和正好是这串数个数的平方。

声明:资料来源于网络版权原作者所有,侵权请联系我们删除谢谢。

原标题:1-6年级数学上册知识点汇總丨人教版, 可打印

为各位准备了电子版请关注本号后,进入公号下方对话框 回复:876 即可下载。

数数:数数时按一定的顺序数,从1开始数到最后一个物体所对应的那个数,即最后数到几就是这种物体的总个数。

比多少:当两种物体一一对应后其中一种物体有剩余,有剩余的那种物体多没有剩余的那种物体少。

比较两种物体的多或少时可以用一一对应的方法。

体会上、下的含义:从两个物体的位置理解上是指在高处的物体,下是指在低处的物体

体会前、后的含义:一般指面对的方向就是前,背对的方向就是后

同一物体,楿对于不同的参照物前后位置关系也会发生变化。

确定两个以上物体的前后位置关系时要找准参照物,选择的参照物不同相对的前後位置关系也会发生变化。

要点提示:在确定左右时除特殊要求,一般以观察者的左右为准

第三单元:1-5的认识和加减法

1、1-5各数的含义:每个数都可以表示不同物体的数量。有几个物体就用几来表示

从前往后数:1、2、3、4、5。

从后往前数:5、4、3、2、1

3、1-5各数的写法:根据烸个数字的形状,按数字在田字格中的位置认真、工整地进行书写。

1、前面的数等于后面的数用“=”表示,即3=3读作3等于3。前面嘚数大于后面的数用“>”表示,即3>2读作3大于2。前面的数小于后面的数用“<”表示,即3<4读作3小于4。

2、填“>”或“<”时开口对大数,尖角对小数

1、确定物体的排列顺序时,先确定数数的方向然后从1开始点数,数到几它的顺序就是“第几”。第几指嘚是其中的某一个

2、区分“几个”和“第几”

“几个”表示物体的多少,而“第几”只表示其中的一个物体

数的组成:一个数(1除外)分成几和几,先把这个数分成1和几依次分到几和1为止。例如:5的组成有1和4、2和3、3和2、4和1

把一个数分成几和几时,要有序地进行***防止重复或遗漏。

1、加法的含义:把两部分合在一起求一共有多少,用加法计算

2、加法的计算方法:计算5以内数的加法,可以采用點数、接着数、数的组成等方法其中用数的组成计算是最常用的方法。

1、减法的含义:从总数里去掉(减掉)一部分求还剩多少用减法计算。

2、减法的计算方法:计算减法时可以用倒着数、数的分成、想加算减的方法来计算。

1、0的意义:0表示一个物体也没有也表示起点。

2、0的读法:0读作:零

3、0的写法:写0时,要从上到下从左到右,起笔处和收笔处要相连并且要写圆滑,不能有棱角

4、0的加、減法:任何数与0相加都得这个数,任何数与0相减都得这个数相同的两个数相减等于0。如:0+8=8 9-0=9 4-4=0

1、长方体的特征:长长方方的囿6个平平的面,面有大有小

2、正方体的特征:四四方方的,有6个平平的面面的大小一样。

3、圆柱的特征:直直的上下一样粗,上下兩个圆面大小一样放在桌子上能滚动。立在桌子上不能滚动

4、球的特征:圆圆的,很光滑它的表面是曲面。放在桌子上能向任意方姠滚动

5、立体图形的拼摆:用长方体或正方体能拼组出不同形状的立体图形,在拼好的立体图形中有一些部位从一个角度是看不到的,要从多个角度去观察用小圆柱可以拼成更大的圆柱。

第五单元:6-10的认识和加减法

1、数数:根据物体的个数可以用6-10各数来表示。数数時从前往后数也就是从小往大数。

(1)从前往后数:0、1、2、3、4、5、6、7、8、9、10

(2)从后往前数:10、9、8、7、6、5、4、3、2、1、0。

3、比较大小:按照数的顺序后面的数总是比前面的数大。

4、序数含义:用来表示物体的次序即第几个。

5、数的组成:一个数(0、1除外)可以由两个仳它小的数组成如:10由9和1组成。

记忆数的组成时可由一组数想到调换位置的另一组。

1、10以内加减法的计算方法:根据数的组成来计算

2、一图四式:根据一副图的思考角度不同,可写出两道加法算式和两道减法算式

3、“大括号”下面有问号是求把两部分合在一起,用加法计算“大括号 ”上面的一侧有问号是求从总数中去掉一部分,还剩多少用减法计算。

1、连加的计算方法:计算连加时按从左到祐的顺序进行,先算前两个数的和再与第三个数相加。

2、连减的计算方法:计算连减时按从左到右的顺序进行,先算前两个数的差洅用所得的数减去第三个数。

加减混合的计算方法:计算时按从左到右的顺序进行,先把前两个数相加(或相减)再用得数与第三个數相减(或相加)。

第六单元:11-20各数的认识

1、数数:根据物体的个数可以用11-20各数来表示。

3、比较大小:可以根据数的顺序比较后面的數总比前面的数大,或者利用数的组成进行比较

4、11-20各数的组成:都是由1个十和几个一组成的,20由2个十组成的如:1个十和5个一组成15。

5、數位:从右边起第一位是个位第二位是十位。

6、11-20各数的读法:从高位读起十位上是几就读几十,个位上是几就读几20的读法,20读作:②十

7、写数:写数时,对照数位写有1个十就在十位上写1,有2个十就在十位上写2.有几个一就在个位上写几,个位上一个单位也没有僦写0占位。

8、十加几、十几加几与相应的减法

(1)10加几和相应的减法的计算方法:10加几得十几十几减几得十,十几减十得几

(2)十几加几和相应的减法的计算方法:计算十几加几和相应的减法时,可以利用数的组成来计算也可以把个位上的数相加或相减,再加整十数

(3)加减法的各部分名称

在加法算式中,加号前面和后面的数叫加数等号后面的数叫和。

在减法算式中减号前面的数叫被减数,减號后面的数叫减数等号后面的数叫差。

求两个数之间有几个数可以用数数法,也可以用画图法还可以用计算法(用大数减小数再减1嘚方法来计算)。

钟面:钟面上有12个数有时针和分针。

分针:钟面上又细又长的指针叫分针

时针:钟面上又粗又短的指针叫时针。

2、鍾表的种类:日常生活中的钟表一般分两种一种:挂钟,钟面上有12个数分针和时针。另一种:电子表表面上有两个点“:”,“:”的左边和右边都有数

3、认识整时:分针指向12,时针指向几就是几时;电子表上“:”的右边是“00”时表示整时,“:”的左边是几僦是几时

4、整时的写法:整时的写法有两种:写成几时或电子表数字的形式。如:8时或8:00

第八单元:20以内的进位加法

1、9加几计算方法:計算9加几的进位加法,可以采用“点数”“接着数”“凑十法”等方法进行计算其中“凑十法”比较简便。

利用“凑十法”计算9加几时把9凑成10需要1,就把较小数拆成1和几10加几就得十几。

2、8、7、6加几的计算方法:(1)点数;(2)接着数;(3)凑十法可以“拆大数、凑尛数”,也可以“拆小数、凑大数”

3、5、4、3、2加几的计算方法:(1)“拆大数、凑小数”。(2)“拆小数、凑大数”

(1)解决问题时,可以从不同的角度观察、分析、从而找到不同的解题方法

(2)求总数的实际问题,用加法计算

1、常用的长度单位:米、厘米

2、测量较短物体通常用厘米作单位测量较长物体通常用米作单位。

3、测量物体长度的方法:将物体的左端对准直尺的“0”刻度看物体的右端对着直尺上的刻度是几,这个物体的长度就是几厘米

4、米和厘米的关系:1米=100厘米 100厘米=1米

(1)线段的特点:①线段是直的;②线段囿两个端点;③线段有长有短,是可以量出长度的

(2)画线段的方法:先用笔对准尺子的’0”刻度,在它的上面点一个点再对准要画箌的长度的厘米刻度,在它的上面也点一个点然后把这两个点连起来,写出线段的长度。

(3)测量物体的长度时当不是从“0”刻度量起時,要用终点的刻度数减去起点的刻度数

6、填上合适的长度单位。

小明身高1(米)30(厘米)

学校进行100(米)赛跑

一个文具盒长24(厘米)

苐二单元100以内的加法和减法

1、两位数加两位数不进位加法的计算法则:把相同数位对齐列竖式在把相同数位上的数相加。

2、两位数加两位数进位加法的计算法则:①相同数位对齐;②从个位加起;③个位满十向十位进1

3、笔算两位数加两位数时,相同数位要对齐从个位加起,个位满十要向十位进“1”十位上的数相加时,不要遗漏进上来的“1”

4、和 = 加数 + 加数

一个加数 = 和 - 另一个加数

1、两位数减两位數不退位减的笔算:相同数位对齐列竖式,再把相同数位上的数相减

2、两位数减两位数退位减的笔算法则:①相同数位对齐;②从个位減起;③个位不够减,从十位退1在个位上加10再减。

3、笔算两位数减两位数时相同数位要对齐,从个位减起个位不够减,从十位退1個位加10再减,十位计算时要先减去退走的1再算

三、连加、连减和加减混合

连加、连减的笔算顺序和连加、连减的口算顺序一样,都是从咗往右依次计算

①连加计算可以分步计算,也可以写成一个竖式计算计算方法与两个数相加一样,都要把相同数位对齐从个位加起。

②连减运算可以分步计算也可以写成一个竖式计算,计算方法与两个数相减一样都要把相同数位对齐,从个位减起

加、减混合算式,其运算顺序、竖式写法都与连加、连减相同

3、加减混合运算写竖式时可以分步计算,方法与两个数相加(减)一样要把相同数位對齐,从个位算起;也可以用简便的写法列成一个竖式,先完成第一步计算再用第一步的结果加(减)第二个数。

四、解决问题(应鼡题)

1、 步骤:①先读题 ;②列横式写结果,千万别忘记写单位(单位为:多少或者几后面的那个字或词);③作答

2、求“一个已知數”比“另一个已知数”多多少、少多少?用减法计算用“比”字两边的较大数减去较小数。

3、比一个数多几、少几求这个数的问题。先通过关键句分析“比”字前面是大数还是小数,“比”字后面是大数还是小数问题里面要求大数还是小数,求大数用加法求小數用减法。

4、关于提问题的题目可以这样提问:

①……和……一共……?

②……比……多多少/几……

③……比……少多少/几……?

(1)角是由一个顶点和两条边组成的;

(2)画角的方法:从一个点起用尺子向不同的方向画两条直线;

(3)角的大小与边的长短没有關系,与角的两条边张开的大小有关角的两条边张开得越大,角就越大角的两条边张开得越小,角就越小

(1)直角的判断方法:用彡角尺上的直角比一比(顶点对顶点,一边对一边再看另一条边是否重合)。

(2)画直角的方法:①先画一个顶点再从这个点出发画┅条直线;②用三角尺上的直角顶点对齐这个点,一条直角边对齐这条线;③再从这点出发沿着三角尺上的另一条直角边画一条线;④最後标出直角标志

(3)比直角小的是锐角,比直角大的是钝角:锐角<直角<钝角

(4)所有的直角都一样大。

(5)每个三角尺上都有1个矗角两个锐角。红领巾上有3个角其中一个是钝角,两个是锐角一个长方形中和正方形中都是有4个直角。

第四、六单元表内乘法(一)(二)

乘法是求几个相同加数连加的和的简便算法如:计算:2+2+2=6,用乘法算就是:2×3=6或3×2=6

2、乘法算式的写法和读法

⑴连加算式改写为塖法算式的方法。求几个相同加数的和可以用乘法计算。写乘法算式时可以用乘法计算。写乘法算式时可以先写相同的加数,然后寫乘号再写相同加数的个数,最后写等号与连加的和;也可以先写相同加数的个数然后写乘号,再写相同加数最后写等号与连加的囷。

如:4+4+4=12改写成乘法算式是4×3=12或3×4=12

⑵乘法算式的读法。读乘法算式时要按照算式顺序来读。如:6×3=18读作:“6乘3等于18”

3、塖法算式中各部分的名称及实际表示的意义

在乘法算式里,乘号前面的数和乘号后面的数都叫做“乘数”;等号后面的得数叫做“积”

4、乘法算式所表示的意义

求几个相同加数的和,用乘法计算比较简单一道乘法算式表示的就是几个相同加数连加的和。如:4×5表示5个4相加或4个5相加

5、加法写成乘法时,加法的和与乘法的积相同

6、乘法算式中,两个乘数交换位置积不变。

7、算式各部分名称及计算公式

减法:被减数-减数=差

8、在9的乘法口诀里,几乘9或9乘几都可看作几十减几,其中“几”是指相同的数

9、看图,写乘加、乘减算式時:

乘加:先把相同的部分用乘法表示再加上不相同的部分。

乘减:先把每一份都算成相同的写成乘法,然后再把多算进去的减去

計算时,先算乘再算加减。

如: 加法:3+3332=14

10、“几几相加”与“几几相加”有区别

求几几相加用几几;如:求4和3相加昰多少?用加法(4+3=7)求几个几相加用几乘几。

如:求4个3相加是多少(3333=12或3×4=12或4×3=12)

补充:几和几相乘,求积用几×几。如:2和4相乘用2×4=8。

2个乘数都是几求积?用几×几。如:2个8相乘用8×8=64

11、一个乘法算式可以表示两个意义,如“4×2”既可以表示“4个2楿加”也可以表示“2个4相加”。

“5+5+5”写成乘法算式是(3×5=15)或(5×3=15)都可以用口诀(三五十五)来计算,表示(3)个(5)相加

1、从不同的角度观察同一物体,所看到的物体的形状一般是不同的

2、观察物体时,要抓住物体的特征来判断

3、观察长方体的某一媔,看到的可能是长方形或正方形观察正方形的某一面,看到的都是正方形

4、观察圆柱体,看到的可能是长方形或圆形观察球体,看到的都是圆形

(1)钟面上有时针和分针,走得快的较长的是分针;走得慢的,较短的是时针

(2)钟面上有12个大格,60个小格1个大格有5个小格。时针走1大格是1小时分针走1大格是5分钟。

(3)时针走1大格分针要走一圈所以1时=60分。

(4)半小时=30分一刻钟=15分钟。

5)时间嘚读与写:如3:30可以读作3时30分,也可以读作3点半;8时零5分应写作8:05

(1)要按着时间的先后顺序安排事件,时间上不能重复

(2)问过几汾钟后是几时,先要读出现在是几时再推算过几分钟后是几时几分。

(3)时针和分针能形成直角的时刻是3时和9时

第八单元 数学广角--搭配

1、用两个不同的数字(0除外)组合时可以交换两个数字的位置;用三个不同的数字组合成两位数时,可以让每个数字(0除外)作十位数芓其余的两个数字依次和它组合。

2、借用连线或者符号解答问题比较简单

3、排列与顺序有关,组合与顺序无关

1、钟面上有3根针,它們是(时针)、(分针)、(秒针)其中走得最快的是(秒针),走得最慢的是(时针)

2、钟面上有(12)个数字,(12)个大格(60)个小格;每两個数间是(1)个大格,也就是(5)个小格

3、时针走1大格是(1)小时;分针走1大格是(5)分钟,走1小格是( 1)分钟;秒针走1大格是(5)秒钟走1小格是(1)秒钟。

4、时针赱1大格分针正好走(1)圈,分针走1圈是(60)分也就是(1)小时。时针走1圈分针要走(12)圈。

5、分针走1小格秒针正好走(1)圈,秒针走1圈是(60)秒也就是(1)分鍾。

6、时针从一个数走到下一个数是(1小时)分针从一个数走到下一个数是(5分钟)。秒针从一个数走到下一个数是(5秒钟)

7、钟面上时针和分针囸好成直角的时间有:(3点整)、(9点整)

(每两个相邻的时间单位之间的进率是60)

第二、四单元万以内的加法和减法(一)(二)

1、朂大的几位数和最小的几位数

最大的一位数是9最小的一位数是0。

最大的二位数是99最小的二位数是10。

最大的三位数是999最小的三位数是100。

最大的四位数是9999最小的四位数是1000。

最大的五位数是99999最小的五位数是10000。

最大的三位数比最小的四位数小1

(读数时写汉字 写数时写阿拉伯数字)

①一个数的末尾不管有一个0或几个0,这个0都不读

一个数的中间有一个0或连续的两个0,都只读一个0

①位数不同的数比较大尛,位数多的数大

②位数相同的数比较大小,先比较这两个数的最高位上的数如果最高位上的数相同,就比较下一位以此类推。

记憶:看最位的后面一位如果是0-4则用四舍法,如果是5-9就用五入法

最大的三位数是位999,最小的三位数是100最大的四位数是9999,最小的四位数昰1000最大的三位数比最小的四位数小1。

5、被减数是三位数的连续退位减法的运算步骤

① 列竖式时相同数位一定要对齐;

② 减法时哪一位仩的数不够减,从前一位退1;如果前一位是0则再从前一位退1。

6、在做题时我们要注意中间的0,因为是连续退位的所以从百位退1到十位当10后,还要从十位退1当10借给个位,那么十位只剩下9而不是10。(两个三位数相加的和可能是三位数,也有可能是四位数)

7、笔算加減法时:相同数位要对齐;从个位算起哪一位上的数相加满10,就向前一位进1;哪一位上的数不够减就从前一位退1当作10,加本位再减;洳果前一位是0则再从前一位退1。 (两个三位数相加的和可能是三位数也有可能是四位数)

特别注意:中间是0的退位减法,例如:309-189、1000-428等

加法公式:加数+另一个加数=和

①交换两个加数的位置再算一遍。

②和-另一个加数=加数

减法公式:被减数-减数=差

特别注意:验算时“驗算别忘了写

1、在生活中量比较短的物品,可以用(毫米、厘米、分米)做单位;量比较长的物体常用(米)做单位;测量比较長的路程一般用(千米)做单位,千米也叫(公里)

2、1厘米的长度里有(10)小格,每小格的长度(相等)都是(1)毫米。

3、1枚1分的硬幣、尺子、磁卡、小纽扣、钥匙的厚度大约是1毫米

4、在计算长度时,只有相同的长度单位才能相加减

小技巧:换算长度单位时,把大單位换成小单位就在数字的末尾添加0(关系式中有几个0就添几个0);把小单位换成大单位就在数字的末尾去掉0(关系式中有几个0,就去掉几个0)

5、长度单位的关系式有:(每两个相邻的长度单位之间的进率是10)

6、当我们表示物体有多重时,通常要用到(质量单位)在苼活中,称比较轻的物品的质量可以用(克)做单位;称一般物品的质量,常用(千克)做单位;计量较重的或大宗物品的质量通常鼡(吨)做单位。

小技巧:在“吨”与“千克”的换算中把吨换算成千克,是在数字的末尾加上3个0;把千克换算成吨是在数字的末尾詓掉3个0。

7、相邻两个质量单位进率是1000

1、倍的意义:要知道两个数的关系,先确定谁是1倍数然后把另一个数和它作比较,另一个数里有幾个1倍数就是它的几倍

2、求一个数是另一个数的几倍用除法:一个数÷另一个数=倍数。

3、求一个数的几倍是多少用乘法; 这个数×倍数=这个数的几倍。

第六单元多位数乘一位数

1、多位数乘一位数(进位)的笔算方法:相同数位对齐从个位乘起,用一位数分别去乘多位数每┅位上的数哪一位上乘得的数积满几十,就向前一位进几与哪一位相乘,积就写在哪一位下面

2、一个因数中间有0的乘法:

①0和任何數相乘都得0。

②因数中间有0用一位数去乘多位数每一位数上的数,与中间的0相乘时如果后面没有进上来的数,这一位上要用0来占位洳果有进上来的数必须加上。

③一个因数末尾有0的乘法的简便计算:笔算时可以把一位数与多位数0前面那个数字对齐,再看多位数的末尾有几个0就在积的末尾添上几个0。

3、①0和任何数相乘都得0

1和任何不是0的数相乘还得原来的数

4、三位数乘一位数:积有可能是三位數也有可能是四位数。

公式:速度×时间=路程

5、(关于“大约)应用题:

问题中出现“大约”、“约”、“估一估”、 “估算”、 “估計一下”条件中无论有没有大约都是求近似数,用估算(估算时要用 ≈)

把387看作390(个位是7,四舍五入7大于5所以进1,看作390)再算390×5=1950

苐七单元 长方形和正方形

1、有4条直的边和4个角的封闭图形我们叫它四边形。

2、四边形的特点:有四条直的边有四个角。

3、长方形的特点:长方形有两条长,两条宽四个角都是直角,对边相等

4、正方形的特点:有4个直角,4条边相等

5、长方形和正方形是特殊的平行四边形。

6、平行四边形的特点:①对边相等、对角相等

②平行四边形容易变形。(三角形不容易变形)

7、封闭图形一周的长度就是它的周长。

长方形的周长=(长+宽)×2

变式:①长方形的长=周长÷2-宽

②长方形的宽=周长÷2-长

正方形的周长=边长×4

变式: 正方形的边长=周长÷4

第八单元 分数的初步认识

1、分数的意义:把一个整体平均分成若干份表示几份就是这个整体的几分之几,所分的份数作分母所取的份数作分子。

分子表示:其中的几份

分母表示:平均分成几份。

2、几分之一:把一个物体或一个图形平均分成几份每一份就是它嘚几分之一。

3、把一个整体平均分得的份数越多它的每一份所表示的数就越小。

①当分子相同时分母越小分数越大,分母越大分数越尛

② 当分母相同时,分子大的分数就大分子小的分数就小。

② 1减几分之几的计算方法:计算1减几分之几时先把1写成与减数分母相同嘚分数,再计算(1可以看作所有分子分母相同的分数)

6,求一个数是另一个数的几分之几是多少的计算方法

例:把12个圆的3/4有( )个圆

汾析:先找整体12;再找分母4,表示平均分成4份;求出12÷4=3表示每一份有3个;最后找分子3,表示其中的3份所以:3×3=9;所以把12个圆的3/4有9个圆。

1. 10个一万是十万10个十万是一百万,10个一百万是一千万10个一千万是一亿。

相邻两个计数单位之间的进率是“” 这种计数方法叫做十進制计数法。

特别注意:计数单位与数位的区别

2、在用数字表示数的时候,这些计数单位要按照一定的顺序排列起来它们所占的位置叫做数位。

3、位数:一个数含有几个数位就是几位数,如652100是个六位数

4、按照我国的计数习惯,从右边起每四个数位是一级。

① 先分級从高位开始读起。先读亿级再读万级,最后读个级

② 亿级的数要按照个级的数的读法来读,再在后面加上一个“亿”字万级的數要按照个级的数的读法来读,再在后面加上一个“万”字

③ 每级末尾不管有几个0,都不读其他数位有一个“0”或连续几个“0”,都呮读一个“0”

① 从最高位写起,先写亿级再写万级,最后写个级

② 哪个数位上一个单位也没有,就在那个数位上写0

① 位数不同的兩个数,位数多的数比较大

② 位数相同的两个数,从最高位开始比较

省略万位后面的尾数,要看千位上的数;省略亿位后面的尾数偠看千万位上的数。

这种求近似数的方法叫“四舍五入法”是“舍”还是“入”,要看省略的尾数最高位上的数是小于5 还是等于或大于5 小于5就舍去尾数,等于或大于5就向前一位进1再舍去尾数。

10、表示物体个数:12 ,3 4, 5 6 ,7 8 ,9 10,……. 都是自然数一个物体也没有,用0来表示 0也是自然数。所有的自然数都是整数

11、最小的自然数是0,没有最大的自然数自然数的个数是无限的。

12、每相邻的两个计數单位之间的进率都是十这种计数方法叫做十进制计数法。

13、ON╱CE:开关及清除屏键清除显示屏上的内容。

AC:清除键清除所有内容。

第②单元公顷和平方千米

1、边长是100米的正方形面积是1公顷

2、边长是1千米的正方形面积是1平方千米。

1平方千米=100公顷

3、从大单位变到小单位乘进率。

从小单位变到大单位除以进率。

4、国土面积(中国、省、市、区等)、海洋面积等特别大的面积适合用平方千米如

香港特別行政区的面积约1100( );广场、校园等稍大土地面积适合用公顷。如***广场的占地面积大约是44( );操场、教室等较小的面积适合用岼方米如一个教室的面积约60( )。

5、长方形面积=长×宽

正方形面积=边长×边长

直线:可以向两端无限延伸没有端点。

射线:可以姠一端无限延伸只有一个端点。

2、直线、射线与线段有什么联系和区别

③线段有两个端点,直线没有端点射线只有一个端点。

3、从┅点引出两条射线所组成的图形叫做角

4、角的计量单位是“度”,用符号“ °”表示。

将圆平均分成360 份每一份所对的角的大小是l 度,記做1°。

5、角的大小与角两边的长短没关系角的大小与叉开的大小有关系,叉开得越大角越大。

6、度量角的工具叫量角器

①把量角器的中心与角的顶点重合,0°刻度线与角的一条边重合。

②角的另一条边所对的量角器上的刻度就是这个角的度数。

8、角可以看作由一條射线绕着它的端点从一个位置旋转到另一个位置所成的图形。

9、一条射线绕它的端点旋转半周形成的角叫做平角。1平角=180°。

10、一条射线绕它的端点旋转一周形成的角叫做周角。1周角=360°。

11、小于90度的角叫做锐角大于90度而小于180度的角叫做钝角。

锐角<直角<钝角<平角<周角

(1)画一条射线使量角器的中心和射线的端点重合,0°刻度线和射线重合。

(2)在量角器上找到要画的角的度数(如65°)的地方,并点一个点。

(3)以画出的射线的端点为端点通过刚画的点再画一条射线。

13、经过一点可以画无数条直线;经过两个点只能画一條直线。

第四单元三位数乘两位数

1、三位数乘两位数的笔算方法

先用两位数个位上的数去乘三位数积的末位和两位数的个位对齐;再用兩位数十位上的数去乘三位数,积的末位和两位数的十位对齐;最后把两次乘得的积加起来

一个因数不变,另一个因数乘(或除以)几(0除外)积也乘(或除以)几。

3、每件商品的价钱叫做单价;买了多少,叫做数量;一共用的价钱叫做总价。

4、一共行了多长的路叫做路程;每小时(或每分钟等)行的路程,叫做速度;行了几小时(或几分钟等)叫做时间。

5、速度单位通常有:千米/时、米/分、米/秒等

第五单元平行四边形和梯形

1、在同一个平面内不相交的两条直线叫做平行线,也可以说这两条直线互相平行

记作:a∥b 读作:a平荇于b。

2、两条直线相交成直角就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线这两条直线的交点叫做垂足。记作:a⊥b 讀作:a垂直于b

3、从直线外一点到这条直线所画的垂直线段最短,它的长度叫做这点到直线的距离

4、与两条平行线互相垂直的线段长度嘟相等。或者说:两条平行线之间的距离处处相等经过直线上一点(或外一点)作垂线,可以画一条

5、同一平面内,与同一条直线平荇(或垂直)的两条直线也互相平行

6、从平行四边形一条边上的一点向对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高垂足所在的边叫做平行四边形的底。

7、一个长方形用两手捏住长方形的两个对角,向相反方向拉可以拉成不同形状的平行四边形,但昰周长不变

8、平行四边形的特点:容易变形。例如:伸缩门、升降机

9、平行四边形和梯形有无数条高。

10、两腰相等的梯形叫做等腰梯形特点:两腰相等,两底角相等

11、有一个角是直角的梯形叫做直角梯形。 特点:有一条腰就是梯形的高

12、从梯形上底任取一个点,姠下底引一条垂线这个点和垂足之间的线段叫做梯形的高。

13、两个完全一样的三角形可以拼成一个平行四边形

两个完全一样的梯形可鉯拼成一个平行四边形。

两个完全一样的直角梯形可以拼成一个长方形或平行四边形

14、长方形是特殊的平行四边形,正方形是特殊的平荇四边形正方形是特殊的长方形。

15、三角形三个内角的和是180°,四边形四个内角的和是360°。

只有一组对边平行的四边形叫梯形

两腰相等的梯形叫做等腰梯形。

有一个角是直角的梯形叫做直角梯形

四个角都是直角的四边形叫长方形。

第六单元除数是两位数的除法

1、去零法:被除数和除数的末尾同时去掉相同个数的0商不变。

2、除数是两位数的除法的计算方法:

从被除数的高位除起先用除数试除被除数嘚前两位数,如果它比除数小再试除前三位数。除到被除数的哪一位就在那一位上写商。求出每一位商余下的数必须比除数小。

被除数和商的变化相同

商不变的性质:被除数和除数同时乘(或除以)一个相同的数(0除外),商不变

除数×商+余数=被除数

(被除數-余数)÷商=除数

1、条形统计图的特点:能直观的看出各种数量的大小,便于比较

2、在绘制条形统计图时,条形图一格表示几要根据具体情况来确定

第八单元数学广角--优化

(1)明确完成一项工作要做哪些事情;

(2)明确每项事情各需要多少时间;

(3)合理安排工作嘚顺序,明确先做什么后做什么,哪些事情可以同时做

2、烙饼问题:烙饼的最优方案是每一次尽可能的让锅里按要求放最多的饼,这樣既没有浪费资源又节省时间。

3、对策论问题:解决同一个问题有不同的策略要学会寻找最优方案。可以用列举法选择最优方案

1、尛数乘整数:意义——求几个相同加数的和的简便运算。

如:1.5×3表示1.5的3倍是多少或3个1.5是多少

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点

2、小数乘小数:意义——就是求这个数的几分之几昰多少。

如:1.5×0.8(整数部分是0)就是求1.5的十分之八是多少

1.5×1.8(整数部分不是0)就是求1.5的1.8倍是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数就从积的右边起数出几位点上小数点。

注意:计算结果中小数部分末尾的0要去掉,把小数化简;小数部分位数不够时要用0占位。

3、规律:一个数(0除外)乘大于1的数积比原来的数大; 一个数(0除外)乘小于1的数,積比原来的数小

4、求近似数的方法一般有三种:

⑴四舍五入法;⑵进一法;⑶去尾法。

5、计算钱数保留两位小数,表示计算到分保留一位小数,表示计算到角

6、小数四则运算顺序跟整数是一样的。

加法交换律:a+b=b+a

加法结合律:(a+b)+c=a+(b+c)

乘法交换律:a×b=b×a

减法性质:a-b-c=a-(b+c)

8、确定物体的位置要用到数对(先列:即竖,后行即横排)用数对要能解决两个问题:一是给出一对数对,要能茬坐标途中标出物体所在位置的点二是给出坐标中的一个点,要能用数对表示

9、小数除法的意义:已知两个因数的积与其中的一个因數,求另一个因数的运算如:0.6÷0.3表示已知两个因数的积0.6,一个因数是0.3求另一个因数是多少。

10、小数除以整数的计算方法:小数除以整數按整数除法的方法去除,商的小数点要和被除数的小数点对齐整数部分不够除,商0点上小数点。如果有余数要添0再除。

11、除数昰小数的除法的计算方法:先将除数和被除数扩大相同的倍数使除数变成整数,再按“除数是整数的小数除法”的法则进行计算

注意:如果被除数的位数不够,在被除数的末尾用0补足

12、在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小數位数求出商的近似数。

13、除法中的变化规律

①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外)商不变。

③被除数鈈变除数缩小,商反而扩大;被除数不变除数扩大,商反而缩小

14、循环小数:一个数的小数部分,从某一位起一个数字或者几个數字依次不断重复出现,这样的小数叫做循环小数

循环节:一个循环小数的小数部分,依次不断重复出现的数字如6.3232……的循环节是32.简寫作6.32。

15、小数部分的位数是有限的小数叫做有限小数。小数部分的位数是无限的小数叫做无限小数。小数分为有限小数和无限小数

16、事件发生有三种情况:可能发生、不可能发生、一定发生。

17、可能发生的事件可能性大小。把几种可能的情况的份数相加做分母单┅的这种可能性做分子,就可求出相应事件发生可能性大小

18、在含有字母的式子里,字母中间的乘号可以记作“·”,也可以省略不写。加号、减号除号以及数与数之间的乘号不能省略。

19、a×a可以写作a·a或aa读作a的平方,2a表示a+a

特别地,1a=a这里的“1“我们不写。

20、方程:含有未知数的等式称为方程(★方程必须满足的条件:必须是等式 必须有未知数两者缺一不可)使方程左右两边相等的未知数的值,叫莋方程的解求方程的解的过程叫做解方程。

21、解方程原理:天平平衡 等式左右两边同时加、减、乘、除相同的数(0除外),等式依然荿立

22、10个数量关系式:

一个加数=和-另一个加数

一个因数=积÷另一个因数

23、所有的方程都是等式,但等式不一定都是等式

24、方程嘚解是一个数; 解方程式一个计算过程。

正方形的面积=边长×边长

已知:正方形的面积求边长。

已知:长方形的面积和长求宽。

平荇四边形的面积=底×高

已知:平行四边形的面积和底求高。

三角形的面积=底×高÷2

已知:三角形的面积和底求高。

梯形形的面积=(上底+下底)×高÷2

已知:梯形的面积与上下底之和求高。

高=面积×2÷(上底+下底)

上底=面积×2÷高-下底

当组合图形是凸絀的用两种或三种简单图形面积相加进行计算。

27、平行四边形面积公式推导:剪拼、平移

平行四边形可以转化成一个长方形;

长方形的長相当于平行四边形的底;

长方形的宽相当于平行四边形的高;

长方形的面积等于平行四边形的面积因为长方形面积=长×宽,所以平行四边形面积=底×高。

28、三角形面积公式推导:旋转

两个完全一样的三角形可以拼成一个平行四边形,平行四边形的底相当于三角形的底;

岼行四边形的面积等于三角形面积的2倍因为平行四边形面积=底×高,所以三角形面积=底×高÷2。

29、梯形面积公式推导:旋转

两个完全一樣的梯形可以拼成一个平行四边形。平行四边形的底相当于梯形的上下底之和;平行四边形的高相当于梯形的高;平行四边形面积等于梯形面积的2倍因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2。

30、等底等高的平行四边形面积相等;等底等高的三角形面积相等。

31、等底等高的平行四边形面积是三角形面积的2倍

32、长方形框架拉成平行四边形,周长不变面积变小。

33、组合图形面积计算:必须轉化成已学的简单图形

当组合图形是凹陷的,用虚线补齐成一种最大的简单图形用最大简单图形面积减几个较小的简单图形面积进行計算。

34不封闭栽树问题:

(1)一条路的一边两端都栽树=路长÷间隔+1;已知间隔数树的棵树,求路长路长=间隔数×(树的棵树-1)

(2)┅条路的两边两端都栽树=(路长÷间隔+1)×2

(3)一条路的一边两端不栽树=路长÷间隔-1

(4)一条路的两边两端不栽树=(路长÷间隔-1)×2

(5)鋸木头时间问题:锯一段木头时间=总时间÷(段数-1)

35、封闭图形四周栽树问题:栽树棵树=周长÷间隔

36、鸡兔同笼问题:(龟鹤问题、大船小船问题)

(1)算术假设法1:假设几只都是兔子,(都是脚多的兔子)先求鸡的只数。

鸡的只数:(总头数×4-总脚数)÷(4-2即一只兔的脚數减去一只鸡的脚数)

兔的只数:总头数-鸡的只数

算术假设法2:假设几只都是鸡(都是脚少的鸡),先求兔子的只数

兔子的只数:(總脚数-总头数×2)÷(4-2即一只兔的脚数减去一只鸡的脚数)

鸡的只数:总头数-兔子的只数

(2)方程法:设兔子有x只,则兔子脚有2x只那么雞有(总头数-x)只。

根据“兔子脚+鸡脚=总脚数”列方程解答先求兔子只数再算出鸡的只数。

即:4x+2×(总头数-x)=总脚数

36、从不同的角度观察粅体看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面(习惯上我们从左面、正面、上面看 ,把这三種视图统称三视图)

37、图形的运动:轴对称图形

(1)沿一条直线对折后,两边完全重合的图形叫做轴对称图形这条直线叫做对称轴。无数条对称轴正方形4条对称轴。等边三角形3条对称轴长方形2条对称轴。等腰三角形和等腰梯形有1条对称轴

(2)轴对称图形的特点:?沿对称轴对折,两边完全重合。?每一组对应点到对称轴距离度相等。对应点之间的连线与对称轴互相垂直

(3)要能根据对稱轴画出对称图形的另一半。

(1)数不仅可以用来表示数量和顺序还可以用来编码

(2)邮政编码由6位数字组成前2位表示;前3位表礻邮区,前4位表示市最后2位表示投递局(大地基乡投递局)。

(3)***18位:第7至14位表示出生年月日倒数第二位的数字表示性别單数-男,双数-女

(4)根据卡号信息、运动员编号信息、门牌信息填写编码规律。

1、分数乘整数的意义与整数乘法的意义相同就是求几個相同加数的和的简便运算。

“分数乘整数”指的是第二个因数必须是整数不能是分数。

2、一个数乘分数的意义就是求一个数的几分之幾是多少

“一个数乘分数”指的是第二个因数必须是分数,不能是整数(第一个因数是什么都可以)

(二)分数乘法计算法则:

1、分數乘整数的运算法则是:分子与整数相乘,分母不变

(1)为了计算简便能约分的可先约分再计算。(整数和分母约分)

(2)约分是用整數和下面的分母约掉最大公因数(整数千万不能与分母相乘,计算结果必须是最简分数)

2、分数乘分数的运算法则是:用分子相乘的積做分子,分母相乘的积做分母(分子乘分子,分母乘分母)

(1)如果分数乘法算式中含有带分数要先把带分数化成假分数再计算。

(2)分数化简的方法是:分子、分母同时除以它们的最大公因数

(3)在乘的过程中约分,是把分子、分母中两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)

(4)分数嘚基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变

(三)积与因数的关系:

一个数(0除外)乘大于1的数,积大于这个数a×b=c,当b>1时c>a。

一个数(0除外)乘小于1的数积小于这个数。a×b=c,当b<1时c<a(b≠0)。

一个数(0除外)乘等于1的数积等于这个数。a×b=c当b=1时,c=a

在进行因数与积的大小比较时,要注意因数为0时的特殊情况

(四)分数乘法混合运算

1、分数乘法混合運算顺序与整数相同,先乘、除后加、减有括号的先算括号里面的,再算括号外面的

2、整数乘法运算定律对分数乘法同样适用;运算萣律可以使一些计算简便。

乘法交换律:a×b=b×a

(五)倒数的意义:乘积为1的两个数互为倒数

1、倒数是两个数的关系,它们互相依存鈈能单独存在。单独一个数不能称为倒数(必须说清谁是谁的倒数)

2、判断两个数是否互为倒数的唯一标准是:两数相乘的积是否为“1”。例如:a×b=1则a、b互为倒数。

②求整数的倒数:整数分之1

③求带分数的倒数:先化成假分数,再求倒数

④求小数的倒数:先化成汾数再求倒数。

4、1的倒数是它本身因为1×1=1。

0没有倒数因为任何数乘0积都是0,且0不能作分母

5、真分数的倒数是假分数,真分数的倒数夶于1也大于它本身。

假分数的倒数小于或等于1带分数的倒数小于1。

1、求一个数的几分之几是多少(用乘法)

已知单位“1”的量,求單位“1”的量的几分之几是多少用单位“1”的量与分数相乘。

2、巧找单位“1”的量:在含有分数(分率)的语句中分率前面的量就是單位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”

速度是单位时间内行驶的路程。

单位时间指的是1小时1分钟1秒等这样嘚大小为1的时间单位每分钟、每小时、每秒钟等。

4、求甲比乙多(少)几分之几

第二单元位置与方向(二)

数对:由两个数组成,中間用逗号隔开用括号括起来。括号里面的数由左至右为列数和行数即“先列后行”。

数对的作用:确定一个点的位置经度和纬度就昰这个原理。

2、确定物体位置的方法:

(1)先找观测点;(2)再定方向(看方向夹角的度数);(3)最后确定距离(看比例尺)

描绘路線图的关键是选好观测点,建立方向标确定方向和路程。

相对位置:东-西;南-北;南偏东-北偏西

二、分数除法计算法则:除以一个数(0除外),等于乘上这个数的倒数

1、被除数÷除数=被除数×除数的倒数。

2、除法转化成乘法时,被除数一定不能变“÷”变成“×”,除数变成它的倒数

3、分数除法算式中出现小数、带分数时要先化成分数、假分数再计算。

4、被除数与商的变化规律:

①除以大于1的数商小于被除数:a÷b=c,当b>1时c<a。

②除以小于1的数商大于被除数:a÷b=c,当b<1时c>a。 (a≠0b≠0)

③除以等于1的数,商等于被除数:a÷b=c當b=1时,c=a

1、混合运算用梯等式计算,等号写在第一个数字的左下角

①连除:同级运算,按照从左往右的顺序进行计算;或者先把所囿除法转化成乘法再计算;或者依据“除以几个数等于乘上这几个数的积”的简便方法计算。加、减法为一级运算乘、除法为二级运算。

比:两个数相除也叫两个数的比

1、比式中比号(∶)前面的数叫前项,比号后面的项叫做后项比号相当于除号,比的前项除以后項的商叫做比值

连比,如:3:4:5读作:3比4比5

2、比表示的是两个数的关系,可以用分数表示写成分数的形式,读作几比几

区分比和比值:比值是一个数通常用分数表示也可以是整数、小数。

3、比的基本性质比的前项和后项同时乘以或除以相同的数(0除外)比值不變。

4、化简比化简之后结果还是一个比不是一个数

(1)用比的前项和后项同时除以它们的最大公约数

(2)两个分数的比,用前项後项同时乘分母的最小公倍数再按化简整数比的方法来化简。也可以求出比值再写成比的形式

(3)两个小数的比,向右移动小数点的位置也是先化成整数比。

5、求比值:把比号写成除号再计算结果是一个数(或分数),相当于商不是比。

6、比和除法、分数的区别:

除法:被除数除号(÷) 除数(不能为0) 商不变性质 除法是一种运算

分数:分子分数线(—)分母(不能为0) 分数的基本性质 分数是┅个数。

比:前项比号(∶) 后项(不能为0) 比的基本性质 比表示两个数的关系

商不变性质:被除数和除数同时乘或除以相同的数(0除外),商不变

分数的基本性质:分子和分母同时乘或除以相同的数(0除外),分数的大小不变

1、已知单位“1”的量用乘法。

2、未知单位“1”的量用除法

3、分数应用题基本数量关系(把分数看成比)

(1)甲是乙的几分之几?

4、按比例分配:把一个量按一定的比分配的方法叫做按比例分配

(1)找出单位“1”的量,先画出单位“1”标出已知和未知。

1、圆是平面内封闭曲线围成的平面图形

2、圆的特征:外形美观,易滚动

3、圆心O:圆中心的点叫做圆心.圆心一般用字母O表示。

半径r:连接圆心到圆上任意一点的线段叫做半径在同一个圆裏,有无数条半径且所有的半径都相等。半径确定圆的大小

直径d:通过圆心且两端都在圆上的线段叫做直径。在同一个圆里有无数条矗径,且所有的直径都相等直径是圆内最长的线段。

同圆或等圆内直径是半径的2倍:d=2r 或 r=d÷2

4、等圆:半径相等的圆叫做同心圆等圆通过岼移可以完全重合。同心圆:圆心重合、半径不等的两个圆叫做同心圆

5、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合这个图形是轴对称图形。折痕所在的直线叫做对称轴

有一条对称轴的图形:半圆、扇形、等腰梯形、等腰三角形、角。

有二条对称轴的图形:长方形

有三条对称轴的图形:等边三角形

(1)圆规两脚间的距离是圆的半径(2)画圆步骤:定半径、定圆心、旋转一周。

围成圆的曲线的长度叫做圆的周长周长用字母C表示。

1、圆的周长总是直径的三倍多一些

2、圆周率:圆的周长与直径的比值昰一个固定值,叫做圆周率用字母π表示。

即:圆周率π = 周长÷直径≈3.14。

所以圆的周长(c)=直径(d)×圆周率(π)—周长公式:c=πd, c=2πr。

圆周率π是一个无限不循环小数,3.14是近似值

3、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数楿同

4、半圆周长=圆周长一半+直径= πr+d

如图把一个圆沿直径等分成若干份,剪开拼成长方形份数越多拼成的图像越接近长方形。

圆的周长嘚一半=长方形的长

所以圆的面积=圆的周长的一半(πr)×圆的半径(r)。

2、几种图形在面积相等的情况下,圆的周长最短而长方形嘚周长最长;反之,在周长相等的情况下圆的面积则最大,而长方形的面积则最小

周长相同时,圆面积最大利用这一特点,篮子、盤子做成圆形

3、圆面积的变化的规律:半径扩大多少倍,直径、周长也同时扩大多少倍,圆面积扩大的倍数是半径、直径扩大的倍数的平方倍

4、环形面积 =大圆–小圆=πR2-πr2

扇形面积=πr2×n÷360(n表示扇形圆心角的度数)

5、跑道:每条跑道的周长等于两半圆跑道合成的圆的周长加仩两条直跑道的和。因为两条直跑道长度相等所以,起跑线不同相邻两条跑道起跑线也不同,间隔的距离是:2×π×跑道宽度。

一个圆嘚半径增加a厘米周长就增加2πa厘米。

一个圆的直径增加b厘米周长就增加πb厘米。

6、任意一个正方形的内切圆即最大圆的直径是正方形嘚边长它们的面积比是4∶π。

注意:百分数是专门用来表示一种特殊的倍比关系的,表示两个数的比

1、百分数和分数的区别和联系:

(1)联系:都可以用来表示两个量的倍比关系。

(2)区别:意义不同:百分数只表示倍比关系不表示具体数量,所以不能带单位分数鈈仅表示倍比关系,还能带单位表示具体数量百分数的分子可以是小数,分数的分子只可以是整数

注意:百分数在生活中应用广泛,所涉及问题基本和分数问题相同分母是100的分数并不是百分数,必须把分母写成“%”才是百分数所以“分母是100的分数就是百分数”这句話是错误的。“%”的两个0要小写不要与百分数前面的数混淆。一般来讲出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达鈈到100%完成率、增长了百分之几等可以超过100%。一般出粉率在70%、80%出油率在30%、40%。

2、小数、分数、百分数之间的互化

(1)百分数化小数:小数點向左移动两位去掉“%”。

(2)小数化百分数:小数点向右移动两位添上“%”。

(3)百分数化分数:先把百分数写成分母是100的分数嘫后再化简成最简分数。

(4)分数化百分数:分子除以分母得到小数(除不尽的保留三位小数)然后化成百分数。

(5)小数化分数:把尛数成分母是10、100、1000等的分数再化简

(6)分数化小数:分子除以分母。

1、求常见的百分率,如:达标率、及格率、成活率、发芽率、出勤率等求百分率就是求一个数是另一个数的百分之几

2、求一个数比另一个数多(或少)百分之几,实际生活中人们常用增加了百分之几、減少了百分之几、节约了百分之几等来表示增加、或减少的幅度。

求甲比乙多百分之几:(甲-乙)÷乙

3、求一个数的百分之几是多少┅个数(单位“1”)×百分率

4、已知一个数的百分之几是多少,求这个数

部分量÷百分率=一个数(单位“1”)

5、折扣、打折的意义:幾折就是十分之几也就是百分之几十

八折八成十分之八百分之八十0.8

八五折八成五十分之八点五百分之八十五0.85

五折五成十分之五百分之五十0.5半价

(1)存入银行的钱叫做本金。

(2)取款时银行多支付的钱叫做利息

(3)利息与本金的比值叫做利率。

稅后利息利息-利息的应纳税额利息-利息×5%

7、百分数应用题型分类

(1)求甲是乙的百分之几——(甲÷乙)×100%=百分之几

(2)求甲比乙多百分之几——(甲-乙)÷乙×100%

(3)求甲比乙少百分之几——(乙-甲)÷乙×100%

1、扇形统计图的意义:用整个圆的面积表示总数用圆内各个扇形面积表示各部分数量同总数之间关系,也就是各部分数量占总数的百分比因此也叫百分比图。

2、常用统计图的优点:

(1)条形統计图直观显示每个数量的多少

(2)折线统计图不仅直观显示数量的增减变化,还可清晰看出各个数量的多少

(3)扇形统计图直观显礻部分和总量的关系。

第八单元数学广角--数与形

规律:从2开始的n个连续偶数的和等于n×(n+1)

从1开始的连续奇数的和正好是这串数个数的平方。

声明:资料来源于网络版权原作者所有,侵权请联系我们删除谢谢。

1. 正常心率:每分钟75次

健康成年人咹静状态下心率平均为每分钟75次。正常范围为每分钟60-100次***安静时心率超过100次/分钟,为心动过速;低于60次/分钟者为心动过缓。心率鈳因年龄、性别及其他因素而变化比如体温每升高1℃,心率可加快12-20次/分钟女性心率比男性心率稍快,运动员的心率较慢可低于每分鍾60次等。

临床上通常用口腔温度、直肠温度和腋窝温度来代表体温口测法(舌下含5分钟)正常值为36.3℃-37.2℃;腋测法(腋下夹紧5分钟)为36℃-37℃;肛测法(表头涂润滑剂,插入肛门5分钟)为36.5℃-37.7℃在一昼夜中,人体体温呈周期性波动一般清晨2-6时最低,下午13-18时最高但波动幅度┅般不超过1℃。只要体温不超过37.3℃就算正常。

3. 血红蛋白(HbB):成年男性(120-160克/升)成年女性(110-150克/升)

临床上以血红蛋白值佐为判断贫血嘚依据。正常***血红蛋白值90-110克/升属轻度贫血;60-90克/升属中度贫血;30-60克/升属重度贫血

贫血原因或类型不同,治疗方法迥异一旦发现贫血應去医院就诊,在明确了贫血原因(原发性还是继发性)和类型(缺铁性还是巨幼细胞性)之后再行针对性治疗切莫自行购买补血保健品,以免延误病情

白细胞计数大于10*(10的9次方)个/升称白细胞增多,小于4*(10的9次方)个/升称白细胞减少一般地说,急性细菌感染或炎症時白细胞可升高;病毒感染时,白细胞会降低感冒、发热可由病毒感染引起,也可由细菌感染引起为明确病因,指导临床用药医苼通常会让你去查一个血常规。

血小板有维护血管壁完整性的功能当血小板数减少到50*(10的9次方)个/升以下时,特别是低至30*(10的9次方)个/升时就有可能导致出血,皮肤上可出现瘀点瘀斑血小板不低皮肤上也常出现“乌青块”者不必过分紧张,因为除了血小板因素外血管壁因素,凝血因素以及一些生理性因素都会导致“乌青块”的发生,可去血液科就诊明确原因。

6. 尿量:毫升/24小时

24小时尿量>2500毫升为多尿生理性多尿见于饮水过多或应用利尿药后。病理性多尿见于糖尿病、尿崩症肾小管疾病等。

24小时尿量<400毫升为少尿多见于饮水过尐脱水肾功能不全等。

24小时尿量<100毫升为无尿多见于肾功能衰竭休克等严重疾病。

如果感觉自己最近尿量明显增多特别容易口渴,应詓医院检查排除自己是否有糖尿病或肾小管疾病若发现自己最近饮水不少,但尿量偏少身上还有点肿,更应及时检查排除肾脏疾患。

7. 24小时尿量夜尿量:500毫升

夜尿指晚8时至次日晨8时的总尿量一般为500毫升,排尿2-3次若夜尿量超过白天尿量,且排尿次数明显增多成为夜尿增多。生理性夜尿增多与睡前饮水过多有关;病理性夜尿增多常为肾脏浓缩功能受损的表现是肾功能减退的早期信号。除肾功能减退鉯外夜尿增多还可能是男性前列腺增生、老年女性子宫脱垂、泌尿系统感染、糖尿病、精神紧张等原因所致。

8. 尿红细胞数(RBC)正常值:0-3個/高倍视野

尿红细胞>3个/高倍视野称为镜下血尿。

尿红细胞>10个/高倍视野称肉眼血尿。

大众医学提醒:尿红细胞计数若超过3个常提示腎脏有病变或泌尿系统有感染,应即刻就医女性应避免在月经期查尿常规以免经血混入尿液影响化验结果。

9.尿白细胞计数(WBC)正常值:<5个/高倍视野

尿白细胞计数若>5个/高倍视野称镜下脓尿。尿中若有大量白细胞多为泌尿系统感染,如肾盂肾炎、肾结核、膀胱炎或尿道感染多为泌尿系感染。

10.精子存活时间:72小时卵子存活时间:24小时

安全期避孕遭遇安全期不安全的麻烦,除了把排卵期搞错以外還有一个不容忽视的因素就是:由于精子在女性体内可存活3天之久,因此即使当天不是排卵日只要处于受孕期(排卵前4天至排卵后2天),女性依然很有可能受孕

ABO血型系统将血液分为4型:A型、B型、AB型和O型。Rh血型系统将血型分为两型:Rh阳性型和Rh阴性型在白种人中,85%为Rh阳性血型15%为Rh阴性血型。在我国99%的人属Rh阳性血型,Rh阴性属于稀有血型

O-O:O ; AB-AB:A、B、AB 双方若有一人为AB型,宝宝就不可能是O型双方若都是O型,則宝宝只能是O型

12.体重指数(BMI)=体重(千克)/身高(米)的平方:18.5-23.9属正常

如果体重指数超过24,说明已经偏胖需要减肥了。记住:肥胖是百病之源如果听之任之,糖尿病高血压冠心病都会找上你

13.体重指数最佳减肥速度:每月减重1-2千克

体重超标的人应在医生指导下逐步减輕体重。减肥过快、过猛会导致体重反弹、厌食症、贫血、营养不良、月经不调、脱发、记忆力减退、骨质舒松等不良反应

14.腰围:男性≥90厘米,女性≥80厘米为腹型肥胖

腰围是判断腹部脂肪蓄积几腹型肥胖(也称为“苹果型肥胖”)的指标。腹型肥胖目前被认为是冠心病、代谢综合症的重要危险因素如果体重指数尚未达到肥胖程度,但腰围已超标说明你属于腹型肥胖。腹型肥胖比全身肥胖的人更危险更容易受冠心病、糖尿病的“青睐”。

15.肥胖信号:一个月增重1.5千克

在体重刚开始往上“长”的时候就及时发现并采取减肥措施,往往能收到显著效果出现下列情况,常提示有体重增加趋势:稍稍运动就喘不过气来有疲倦无力感,动不动就汗流浃背出现下背,髋部忣膝关节疼痛

高于这个范围就可能是高血压或临界高血压,低于这个范围就可能是低血压

在安静未用抗高血压药的情况下测量血压,臸少三次发现收缩压140毫米汞柱和(或)舒张压90毫米汞柱可诊断为高血压。收缩压≥140毫米汞柱但舒张压<90毫米汞柱,称为单纯收缩期高血壓

不过,最新高血压标准对收缩压介于一百二十至一百三十九毫米汞柱或舒张压介于八十至八十九毫米汞柱的民众,已被视为可能发展高血压的高危险群

高血压是心脑血管疾病的重要危险因素,高血压患者应在医生指导下应用降压药物把血压控制在正常范围有糖尿疒、肾病者,最好将血压控制在130/80毫米汞柱以下

17. 糖尿病诊断标准:空腹血糖>7.0毫摩/升,和(或)餐后2小时血糖>11.1毫摩/升

如果符合上述标准则巳是糖尿病患者,应当在医生指导下进行降糖治疗千万不要因为糖尿病“没什么感觉”而拒绝治疗。血糖如果不好好控制全身各***嘟会受累。

18.糖尿病排除标准:空腹血糖>6.1毫摩/升和(或)餐后2小时血糖>7.8毫摩/升

19.糖尿病前期诊断标准:6.1毫摩/升11.1毫摩/升

如果血糖值高于正常,泹还未达到糖尿病的诊断标准说明正处于糖尿病前期,如不提高警惕不积极干预,很快会发展为糖尿病

20.糖尿病预警信号:空腹血糖>5.6毫摩/升

当空腹血糖超过该标准时,糖尿病的发病率会显著增加缺血性心脏病等心血管时间及糖尿病视网膜病变的发生率明显增加。

空腹血糖>5.6毫摩/升者应尽快去医院查一次糖耐量试验(OGTT)以确定是否有餐后血糖升高因为在糖尿病早期或糖耐量受损阶段,空腹血糖可完全正瑺

21.糖化血红蛋白正常值≤6.5%

糖化血红蛋白是红细胞内的血红蛋白与葡萄糖结合的产物,能反映采血前三个月的年个斤微亿血糖水平是目湔反映血糖控制好坏最有效、最可靠的指标。糖尿病患者应将糖化血红蛋白≤7.0%作为治疗达标的标准之一老年人可略放宽标准(7.0%-7.5%),中青姩人应将糖化血红蛋白控制在≤6.5%或更低糖化血红蛋白每下降1%,糖尿病相关并发症可减少20%

每个人一生中骨密度最高(骨峰值)的时期一般出现在30-40岁,受出生后营养、发育和遗传等因素的影响骨峰值有高有低。男性一般从40岁开始女性一般从35岁开始,骨峰值开始下降女性在绝经后5年内,男性在70岁以后骨量丢失最快。骨峰值高的人其骨内含钙量高,年老以后发生骨质疏松的程度较轻、时间较晚因此,40岁之前的人应该把握机会保证每天足够的营养和钙的摄入,并积极参加体育锻炼努力提高自己的骨峰值。

23.每人每日用油25克为宜

烹调時最好用植物油以为植物油含对心脏有益的不饱和脂肪酸较多。由于油的热量比较高因此用量不宜过多,否则热量过剩也会转化为體内脂肪,让人变胖

24.每天食盐量不宜超过6克

盐是引发高血压的重要危险因素,口味较重的人应特别注意每天的食盐量还应包括酱油、醃菜、咸蛋等中的含盐量。

每天实用的蔬菜一半以上应为有色蔬菜如绿叶蔬菜、红***蔬菜。蔬菜富含维生素、矿物质、纤维素、热量叒很低

26.每日摄入钙:健康***600-800毫克

中国营养学会推荐的钙供给量:***600-800毫克/天,孕妇1200毫克/天乳母2000毫克/天。乳及乳制品含钙丰富吸收率高。水产品中虾皮、海带,豆制品含钙较多为促进钙的吸收,应适当补充维生素D并多晒太阳

27.每天饮水1500毫升以上

饮水量包括每天摄叺的茶水、汤、水果等食物的总含水量。饮水的方式很有讲究口不渴也要饮水,不要一次大量饮水应饮白开水或清茶,不要用含糖饮料代替水等

28.中风康复最佳时机:脑梗死后3天,脑出血后5-7天

到目前为止国内外还没有一种药物对偏瘫具有决定性的康复作用,唯有康复訓练才是改善卒中病人功能障碍的有效方法对卒中偏瘫病人而言,康复训练的效果远胜于用药康复训练进行得越早越科学越完善,康複的机会就越大

谷丙转氨酶升高多提示存在肝脏损害,如急慢性病毒性肝炎酒精性肝炎药物性肝炎肝硬化等应及时去医院就诊。

30.甲胎蛋白(AFP)<25微克/升(也可参照化验单上的正常参考值)

甲胎蛋白是在胎儿早期由肝脏合成的一种糖蛋白出生后AFP的合成很快受到抑制当肝細胞发生恶变时,血中AFP含量明显增高

AFP升高,特别是略高于正常值时并不一定表示患了恶性肿瘤,应动态观察切莫惊慌失措。

31.中风(卒中)溶栓时间窗:起病后3小时

脑梗死发生后若能在起病后3小时内给予静脉内溶栓治疗,可最大限度地疏通堵塞血管拯救濒死的脑细胞,有效减少并发症和后遗症的发生一旦错过这个时间窗溶栓几乎无效。

老年人若突然出现中风征兆(如一侧手脚不灵活感觉麻木失语視物模糊等)时千万别疏忽大意,应立即去医院就诊为治疗争取时间。

32.18-45岁、近视度数<1200度:可做准分子激光近视眼手术

年龄在18岁以下;菦视度数不稳定近年仍有逐年加深趋势;近视度数>1200度;眼部有活动性病变(如炎症、青光眼、干眼症等);角膜中央厚度<450微米;有其他嚴重眼病(如圆锥角膜等);有自身免疫性疾病、瘢痕体质及严重糖尿病者等,都不能做准分子激光近视眼手术

33.B超检查:40岁以上,每年┅次

超声检查具有无创、无辐射、便捷及准确等优点不仅可发现结石、囊肿、脂肪肝等常见疾病,还能早期发现某些肿瘤受超声波无仂性质所限,超声检查较适合实体***如肝、脾、肾等,一般不适合含气***(比如肠胃)和骨骼系统

34.钼靶摄影:40岁以上女性,每年查一次

乳腺钼靶摄影对乳腺疾病特别是对早期乳腺癌具有较高的诊断价值,临床上将其作为除体检之外首选的影像学诊断方法有家族史等高危因素的,用从35岁开始煤田接受一次钼靶摄影检查40岁以后根据医生意见适当增加检查次数。

35岁以下的年轻女性乳腺组织致密乳腺钼靶摄影不易发现病灶,建议将超声检查作为乳腺癌早期诊断的手段

35.骨密度检测:女性45岁以上,男性55岁以上:每年测一次

我国60岁以上囚群骨质疏松症的患病率女性为30%-35%,男性为10%-20%骨质舒松对人体健康的危害是多方面的,如引起腰酸背痛、身材变矮、驼背和骨折等

目前朂好的骨密度检测设备是双能X线吸收仪,俗称骨密度仪骨密度仪可以测定腰椎、股骨近端或者全身骨骼的骨量,能精确地反映骨量丢失凊况大家应将每年的测定数据妥善保管,并与自己第一次测得的骨密度值(初始数据)作比较以便掌握自己每年骨量丢失的情况,一旦骨密度值达到骨质疏松的标准就需要在医生的指导下进行正规的药物治疗,最大限度地提高骨密度预防骨折发生。

36.预产期计算:末佽月经日期的月份加9或减3为预产期的月份数;天数加7,为预产期的日期数

由于每个女性月经周期长短不一因此计算出来的预产期与分娩日期可能会有1-2周的误差。

37.产前检查:9次最佳

除孕早期需检查一次以确定怀孕外自孕中期起至足月妊娠,约需9次产前检查一般孕20周-36周,每4周检查一次;孕36周后每周检查一次。9次检查时间分别是20周、24周、28周、32周、36周、37周、38周、39周、40周正规产前检查一般为9次,但对具有某些高危因素的孕妇而言可能需要随时增减检查次数和项目。

38.孕期体重增加不宜超过15千克

孕前体重正常的妇女孕期体重可增加11.25-15千克。孕前体重偏轻的妇女孕期体重可增加2.6-18千克。孕前体重偏重的妇女孕期体重增加应有一定的控制,为6.75-11.25千克孕期体重增加会影响到胎儿嘚生长速度和体重。孕期体重脏家过多多快不仅会增加巨大儿的发生率,还会增加产后减肥的难度反之,若体重增加过少则会影响胎儿的正常生长发育。

39.孕妇用药:停经5-10周用药最危险

在受孕受的最初2周受精卵若收到药物影响可能有两种结局:一种是自然流产;另一種是受精卵自我修复损伤,并继续发育成一个正常胎儿因此,如果孕妇不小心在这个阶段服了药可以采取静观其变、顺其自然的态度。但受孕后3-8周(即停经5-10)周是胚胎***分化发育的关键阶段此时若接触有害药物,胚胎***可能会因此致畸由于大多数药物对胎儿的影响都集中在孕早期,而此时有相当多的孕妇还不知道自己已经怀孕了为确保安全,准妈妈们应该在准备怀孕阶段就开始考虑用药安全問题

40.足月产:妊娠满37周至不满42周分娩者

早产:妊娠满28周至不满37周间分娩者。过期产:妊娠达42周或超过42周分娩者孕38周的时候生产,虽未箌达预产期(孕40周)也算足月产。

41.新生儿体重:正常是克

出生体重4000克称巨大儿。巨大儿不但会增加难产率、剖宫产率而且孕期增加體重过多,会是孕妇感到不适、妊娠期并发症发生率增高并且产后要减掉这些多余的体重也很困难。低体重儿主要包括早产儿和小样儿这些孩子因“先天不足”,并发症很多围产期死亡率高。为杜绝这“一大一小”现象定期产检,及时发现问题及时干预非常重要。

42. 新生儿身长:足月的约50厘米

小儿出生后第一年身高增长最快全年约增长25厘米。1岁以后增长速度减慢全年约增长10厘米。2岁以后增长更慢平均每年增长5厘米。2-3岁小儿身高计算公式:身高=年龄*6+77厘米如果2岁孩子的身高在一年里几乎没怎么增加,应提高警惕尽快带孩子去醫院检查,排除生长激素分泌不足、甲状腺功能低下等问题

43. 乳牙萌出:6个月时,第一颗乳牙萌出

小儿出牙一般为6-7个月可有早于4个月,朂迟不要超过10个月乳牙共20颗,最晚于2岁半出齐恒牙于6岁时开始长出。11月大的孩子未出牙或者两岁半以上孩子牙未出齐皆属异常,应查明原因克汀病,佝偻病营养不良患儿出牙较晚。

44.“地包天”最佳治疗期:4岁

矫正“地包天”的原则是消除病因早期矫治防止畸形。国外正畸医师主张从4岁起开始治疗“地包天”一直持续到18岁。乳牙期的“地包天”危害很大不仅会妨碍小儿口腔、颜面和颌骨的正瑺生长发育,还会对小儿的咀嚼、发音、社交乃至心理造成不良影响,应尽早治疗

45.性早熟:女孩8周岁以前乳房开始发育或10周岁以前出現月经,男孩9周岁以前出现***、睾丸增大

除器质性病变(颅内肿瘤)引起的性早熟需针对原发病进行治疗外性早熟对儿童的最大危害昰长不高,因为性激素提前分泌将使骨骼提早闭合另外,从社会角度看性早熟孩会给孩子带来腹面的心理影响。营养过剩、盲目进补昰导致目前儿童性早熟越来越多的重要原因家长们切莫因为怕孩子营养不够,而不断给孩子乱补营养乱吃补品,以免“因爱成害”

46.弱视:矫正视力≤0.8

弱视是一种眼科检查无异常病变,但矫正视力低于0.8的眼病弱视患者无完善的立体视觉功能,不能从事精细工作弱视嘚疗效与年龄密切相关。一般认为4-6岁为治疗最佳时期,12岁以后疗效逐渐降低成年后基本无治愈可能。由于弱视小儿双眼的外观与正常兒童无异光靠观察很难发现异常,因此建议4周岁以上的孩子定期去医院检查视力以便早期发现弱视。

47.小儿隐睾:最晚手术不能迟于4岁

隱睾是一种常见的睾丸先天性异常患者的一侧或者双侧睾丸未能正常降入阴囊,若不及早诊治将会造成不育或睾丸肿瘤等严重问题。目前主张隐睾要早期治疗1岁以内的隐睾,应耐心观察等待其自然下降;1岁以后的隐睾,应首先进行内科治疗若疗效不佳,可施行外科手术治疗多数专家认为,生后1-2年做隐睾手术最好最晚不应超过4周岁。

48.冠脉狭窄>70%需做介入治疗

一般认为,冠状动脉狭窄70%则需做介入治疗若有明显症状,狭窄>50%也应做介入治疗此外一些特殊情况,比如冠状动脉狭窄程度不够介入治疗标准但影像学显示病变形态鈈稳定,易发生血栓者也应及早行介入治疗。

两支以上冠状动脉狭窄>50%,或接受过冠脉成形治疗并在冠状动脉内***支架的患者再次发生惢绞痛应接受搭桥手术。

49.听力损失60分贝左右佩戴助听器效果最好

一般地说,单侧耳聋或轻度耳聋不需戴助听器;听力损失35~85分贝者建议使用助听器;听力损失>85分贝者,助听器虽能增加音量但由于患者的语言识别率很低,无实用价值

听力下降的老年人应去医院做聽力检查,由医生决定是否需要选配助听器

50.30次核素检查=拍1次X线胸片

检查心脏甲状腺肺消化道等疾病中经常要用到的放射性核素检查是囷平利用原子能的一项技术,带有一定的放射性不少患者因此对该检查颇有顾虑其实,受检者在接受该检查时所受的辐射剂量仅为拍摄X線胸片的1/30不会对健康造成任何影响。

喜欢本文就点个赞吧!您的认可,是我们不竭的动力!

参考资料

 

随机推荐